Yazar "Abbott, B." seçeneğine göre listele
Listeleniyor 1 - 20 / 184
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A search for R-parity-violating supersymmetry in final states containing many jets in pp collisions at √s=13 TeV with the ATLAS detector(Springer, 2024) Aad, Georges; Abbott, B.; Abeling, K.; Beddall, Andrew John; Çetin, Serkant AliA search for R-parity-violating supersymmetry in final states with high jet multiplicity is presented. The search uses 140 fb(-1) of proton-proton collision data at root s = 13 TeV collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature prompt gluino-pair production decaying directly to three jets each or decaying to two jets and a neutralino which subsequently decays promptly to three jets. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted. Gluinos with masses up to 1800 GeV are excluded when decaying directly to three jets. In the cascade scenario, gluinos with masses up to 2340 GeV are excluded for a neutralino with mass up to 1250 GeV.Öğe Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using ?s=13 TeV pp collisions with the ATLAS detector(Amer Physical Soc, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliA search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at root s =13 TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139 fb(-1). The search targets the high Y-mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into bb, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section sigma(pp -> Y -> XH -> qqbb) for signals with m(Y) between 1.5 and 6 TeV and m(X) between 65 and 3000 GeV.Öğe ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset(Springer, 2023) Aad, G.; Abbott, B.; Abeling, K.; Abicht, N. J.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThe flavour-tagging algorithms developed by the AvTLAS Collaboration and used to analyse its dataset of root s = 13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model t (t) over bar events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained.Öğe The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2(SPRINGER, 2022) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Adıgüzel, AytülThe design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-2018 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb(-1), 46.9 fb(-1), and 60.6 fb(-1) respectively of proton-proton collision data at a centre-of-mass energy of 13TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and b-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme.Öğe Author Correction: A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery (Nature, (2022), 607, 7917, (52-59), 10.1038/s41586-022-04893-w)(Nature Research, 2023) Aad, G.; Abbott, B.; Abbott, D.C.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Çetin, Serkant AliCorrection to: Nature Published online 4 July 2022 In the version of this article initially published, the ATLAS Collaboration author names, affiliations and acknowledgements were omitted and have now been included in the HTML and PDF versions of the article. © 2023, The Author(s).Öğe Azimuthal angle correlations of muons produced via heavy-flavor decays in 5.02 TeV Pb+Pb and pp collisions with the ATLAS detector(American physical society, 2024) Aad, G.; Abbott, B.; Beddall, Andrew John; Çetin, Serkant Ali; Öztürk, Sertaç; Şimşek, SinemAngular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Formula Presented and Formula Presented collisions at the LHC. The muons are measured with transverse momenta and pseudorapidities satisfying Formula Presented and Formula Presented, respectively. The distributions of azimuthal angle separation Formula Presented for muon pairs having pseudorapidity separation Formula Presented, are measured in different Formula Presented centrality intervals and compared to the same distribution measured in Formula Presented collisions at the same center-of-mass energy. Results are presented separately for muon pairs with opposite-sign charges, same-sign charges, and all pairs. A clear peak is observed in all Formula Presented distributions at Formula Presented, consistent with the parent heavy-quark pairs being produced via hard-scattering processes. The widths of that peak, characterized using Cauchy-Lorentz fits to the Formula Presented distributions, are found to not vary significantly as a function of Formula Presented collision centrality and are similar for Formula Presented and Formula Presented collisions. This observation will provide important constraints on theoretical descriptions of heavy-quark interactions with the quark-gluon plasma.Öğe Calibration of a soft secondary vertex tagger using proton-proton collisions at Formula Presented with the ATLAS detector(American physical society, 2024) Aad, G.; Aakvaag, E.; Abbott, B.; Beddall, Andrew John; Çetin, Serkant Ali; Öztürk, Sertaç; Şimşek, Sinem; Uysal, Zekeriya; Çelebi, EmreSeveral processes studied by the ATLAS experiment at the Large Hadron Collider produce low-momentum Formula Presented-flavored hadrons in the final state. This paper describes the calibration of a dedicated tagging algorithm that identifies Formula Presented-flavored hadrons outside of hadronic jets by reconstructing the soft secondary vertices originating from their decays. The calibration is based on a proton-proton collision dataset at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of Formula Presented. Scale factors used to correct the algorithm’s performance in simulated events are extracted for the Formula Presented-tagging efficiency and the mistag rate of the algorithm using a data sample enriched in Formula Presented events. Several orthogonal measurement regions are defined, binned as a function of the multiplicities of soft secondary vertices and jets containing a Formula Presented-flavored hadron in the event. The mistag rate scale factors are estimated separately for events with low and high average numbers of interactions per bunch crossing. The results, which are derived from events with low missing transverse momentum, are successfully validated in a phase space characterized by high missing transverse momentum and therefore are applicable to new physics searches carried out in either phase space regime.Öğe Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z plus jets events using 139 fb-1 of ATLAS proton-proton collision data at ?s=13 TeV(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThe identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton-proton collision events at root s = 13 TeV corresponding to an integrated luminosity of 139 fb(-1). The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties.Öğe Charged-hadron production in pp, p+Pb, Pb+Pb, and Xe+Xe collisions at ?sNN = 5 TeV with the ATLAS detector at the LHC(Springer Science and Business Media Deutschland GmbH, 2023) Aad, G.; Abbott, B.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Çetin, Serkant AliThis paper presents measurements of charged-hadron spectra obtained in pp, p+Pb, and Pb+Pb collisions at s or sNN = 5.02 TeV, and in Xe+Xe collisions at sNN = 5.44 TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb?1, 28 nb?1, 0.50 nb?1, and 3 ?b?1, respectively. The nuclear modification factors RpPb and R AA are obtained by comparing the spectra in heavy-ion and pp collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor RpPb shows a moderate enhancement above unity with a maximum at p T ? 3 GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct p T-dependence with a local maximum at p T ? 2 GeV and a local minimum at p T ? 7 GeV. This dependence is more distinguishable in more central collisions. No significant |?|-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe R AA better in central collisions and in the p T range from about 10 to 100 GeV. [Figure not available: see fulltext.] © 2023, The Author(s).Öğe Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator using 139 fb−1 of s=13 TeV pp collision data(Elsevier, 2024) Aad, G.; Abbott, B.; Beddall, Andrew John; Çetin, Serkant Ali; Öztürk, Sertaç; Şimşek, SinemResults from a wide range of searches targeting different experimental signatures with and without missing transverse momentum (ETmiss) are used to constrain a Two-Higgs-Doublet Model (2HDM) with an additional pseudo-scalar mediating the interaction between ordinary and dark matter (2HDM+a). The analyses use up to 139 fb−1 of proton–proton collision data at a centre-of-mass energy s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider during 2015–2018. The results from three of the most sensitive searches are combined statistically. These searches target signatures with large ETmiss and a leptonically decaying Z boson; large ETmiss and a Higgs boson decaying to bottom quarks; and production of charged Higgs bosons in final states with top and bottom quarks, respectively. Constraints are derived for several common and new benchmark scenarios in the 2HDM+a.Öğe Combination of searches for Higgs boson decays into a photon and a massless dark photon using pp collisions at s= 13 TeV with the ATLAS detector(Springer science and business media deutschland GmbH, 2024) Aad, G.; Abbott, B.; Beddall, Andrew John; Çetin, Serkant Ali; Çelebi, Emre; Şimşek, Sinem; Uysal, Zekeriya; Öztürk, Sertaç; Şahinsoy, MerveA combination of searches for Higgs boson decays into a visible photon and a massless dark photon (H → γγd) is presented using 139 fb−1 of proton-proton collision data at a centre-of-mass energy of s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on the Standard Model Higgs boson decay branching ratio is determined to be B(H → γγd) < 1.3% (1.5)%. The search is also sensitive to higher-mass Higgs bosons decaying into the same final state. The observed (expected) 95% confidence level limit on the cross-section times branching ratio ranges from 16 fb (20 fb) for mH = 400 GeV to 1.0 fb (1.5 fb) for mH = 3 TeV. Results are also interpreted in the context of a minimal simplified model.Öğe Combination of searches for invisible decays of the Higgs boson using 139 fb?1 of proton-proton collision data at s=13 TeV collected with the ATLAS experiment(Elsevier B.V., 2023) Aad, G.; Abbott, B.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Çetin, Serkant AliMany extensions of the Standard Model predict the production of dark matter particles at the LHC. Sufficiently light dark matter particles may be produced in decays of the Higgs boson that would appear invisible to the detector. This Letter presents a statistical combination of searches for H?invisible decays where multiple production modes of the Standard Model Higgs boson are considered. These searches are performed with the ATLAS detector using 139 fb?1 of proton–proton collisions at a centre–of–mass energy of [Formula presented] at the LHC. In combination with the results at [Formula presented] and [Formula presented], an upper limit on the H?invisible branching ratio of 0.107 (0.077) at the 95% confidence level is observed (expected). These results are also interpreted in the context of models where the 125 GeV Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross-section of weakly interacting massive particles and nucleons. © 2023 The Author(s)Öğe Combination of searches for pair-produced leptoquarks at s=13 TeV with the ATLAS detector(Elsevier, 2024) Aad, G.; Abbott, B.; Beddall, Andrew John; Çetin, Serkant Ali; Şimşek, Sinem; Uysal, Zekeriya; Öztürk, SertaçA statistical combination of various searches for pair-produced leptoquarks is presented, using the full LHC Run 2 (2015–2018) data set of 139 fb−1 collected with the ATLAS detector from proton–proton collisions at a centre-of-mass energy of s=13 TeV. All possible decays of the leptoquarks into quarks of the third generation and charged or neutral leptons of any generation are investigated. Since no significant deviations from the Standard Model expectation are observed in any of the individual analyses, combined exclusion limits are set on the production cross-sections for scalar and vector leptoquarks. The resulting lower bounds on leptoquark masses exceed those from the individual analyses by up to 100 GeV, depending on the signal hypothesis.Öğe Combination of searches for singly and doubly charged Higgs bosons produced via vector-boson fusion in proton–proton collisions at s=13 TeV with the ATLAS detector(Elsevier b.v., 2025) Aad, G.; Abbott, B.; Beddall, Andrew John; Çetin, Serkant Ali; Çelebi, Emre; Şimşek, Sinem; Uysal, Zekeriya; Öztürk, Sertaç; Şahinsoy, MerveA combination of searches for singly and doubly charged Higgs bosons, H-+/- and H-+/-+/-, produced via vector-boson fusion is performed using 140 fb(-1) of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production crosssection times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination.Öğe Combined Measurement of the Higgs Boson Mass from the H ? ?? and H ? ZZ* ? 4l Decay Channels with the ATLAS Detector Using ?s=7, 8, and 13 TeV pp Collision Data(Amer Physical Soc, 2023) Aad, G.; Abbott, B.; Abeling, K.; Abicht, N. J.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliA measurement of the mass of the Higgs boson combining the H -> ZZ* -> 4l and H -> gamma gamma decay channels is presented. The result is based on 140 fb(-1) of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11 +/- 0.09(stat) +/- 0.06(syst) = 125.11 +/- 0.11 GeV. This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics.Öğe Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS(Elsevier, 2023) Aad, G.; Abbott, B.; Abeling, K.; Abicht, N. J.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliParton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb-1 of Pb+Pb data and 260 pb-1 of pp data, both at root sNN = 5.02 TeV, with the ATLAS detector. The process pp -> gamma +jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.Öğe Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in pp collisions at = 13 TeV with the ATLAS detector(Elsevier B.V., 2025) Aad, G.; Aakvaag, E.; Abbott, B.; Beddall, Andrew John; Çelebi,; Öztürk, Sertaç; Şahinsoy, Merve; Şimşek, Sinem; Uysal, ZekeriyaThis Letter presents a constraint on the total width of the Higgs boson (ΓH) using a combined measurement of on-shell Higgs boson production and the production of four top quarks, which involves contributions from off-shell Higgs boson-mediated processes. This method relies on the assumption that the tree-level Higgs-top Yukawa coupling strength is the same for on-shell and off-shell Higgs boson production processes, thereby avoiding any assumptions about the relationship between on-shell and off-shell gluon fusion Higgs production rates, which were central to previous measurements. The result is based on up to 140 fb−1 of proton–proton collisions at a centre-of-mass energy of s = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on ΓH is 450 MeV (75 MeV). Additionally, considering the constraint on the Higgs-top Yukawa coupling from loop-induced Higgs boson production and decay processes further yields an observed (expected) upper limit of 160 MeV (55 MeV). © 2025 CERN for the benefit of the ATLAS CollaborationÖğe Constraints on Higgs boson production with large transverse momentum using H -> b(b)over-bar decays in the ATLAS detector(AMER PHYSICAL SOC, 2022) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Çetin, Serkant Ali; Öztürk, SertaçThis paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb(-1.) Higgs bosons decaying into b (b) over bar are reconstructed as single large-radius jets recoiling against a hadronic system and are identified by the experimental signature of two b-hadron decays. The experimental techniques are validated in the same kinematic regime using the Z -> b (b) over bar process. The 95% confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model cross section predictions for a Higgs boson with a mass of 125 GeV in the same kinematic regions are 18.4 fb and 0.13 fb, respectively.Öğe Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThis paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb(-1) of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the StandardModel in associationwith a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30(-0.09)(+0.13)) is observed (expected) at 95% confidence level.Öğe Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at?s=13 TeV(Elsevier, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliConstraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb over bar bb over bar , bb over bar & tau;+& tau;- and bb over bar & gamma; & gamma; decay channels with single-Higgs boson analyses targeting the & gamma;& gamma;, Z Z*, W W *, & tau;+& tau;- and bb over bar decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton-proton collisions at & RADIC;s = 13 TeV and correspond to an integrated luminosity of 126-139 fb-1. The combination of the double-Higgs analyses sets an upper limit of & mu;HH < 2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (& lambda;HHH), values outside the interval -0.4 < & kappa;& lambda; = (& lambda;HHH/& lambda;SM H H H ) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes -1.4 < & kappa;& lambda; < 6.1 at 95% CL. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.