Yazar "Abbott, D. C." seçeneğine göre listele
Listeleniyor 1 - 20 / 67
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using ?s=13 TeV pp collisions with the ATLAS detector(Amer Physical Soc, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliA search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at root s =13 TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139 fb(-1). The search targets the high Y-mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into bb, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section sigma(pp -> Y -> XH -> qqbb) for signals with m(Y) between 1.5 and 6 TeV and m(X) between 65 and 3000 GeV.Öğe The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2(SPRINGER, 2022) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Adıgüzel, AytülThe design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-2018 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb(-1), 46.9 fb(-1), and 60.6 fb(-1) respectively of proton-proton collision data at a centre-of-mass energy of 13TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and b-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme.Öğe Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z plus jets events using 139 fb-1 of ATLAS proton-proton collision data at ?s=13 TeV(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThe identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton-proton collision events at root s = 13 TeV corresponding to an integrated luminosity of 139 fb(-1). The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties.Öğe Constraints on Higgs boson production with large transverse momentum using H -> b(b)over-bar decays in the ATLAS detector(AMER PHYSICAL SOC, 2022) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Çetin, Serkant Ali; Öztürk, SertaçThis paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb(-1.) Higgs bosons decaying into b (b) over bar are reconstructed as single large-radius jets recoiling against a hadronic system and are identified by the experimental signature of two b-hadron decays. The experimental techniques are validated in the same kinematic regime using the Z -> b (b) over bar process. The 95% confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model cross section predictions for a Higgs boson with a mass of 125 GeV in the same kinematic regions are 18.4 fb and 0.13 fb, respectively.Öğe Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThis paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb(-1) of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the StandardModel in associationwith a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30(-0.09)(+0.13)) is observed (expected) at 95% confidence level.Öğe Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at?s=13 TeV(Elsevier, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliConstraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb over bar bb over bar , bb over bar & tau;+& tau;- and bb over bar & gamma; & gamma; decay channels with single-Higgs boson analyses targeting the & gamma;& gamma;, Z Z*, W W *, & tau;+& tau;- and bb over bar decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton-proton collisions at & RADIC;s = 13 TeV and correspond to an integrated luminosity of 126-139 fb-1. The combination of the double-Higgs analyses sets an upper limit of & mu;HH < 2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (& lambda;HHH), values outside the interval -0.4 < & kappa;& lambda; = (& lambda;HHH/& lambda;SM H H H ) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes -1.4 < & kappa;& lambda; < 6.1 at 95% CL. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.Öğe Correlations between flow and transverse momentum in Xe plus Xe and Pb plus Pb collisions at the LHC with the ATLAS detector: A probe of the heavy-ion initial state and nuclear deformation(Amer Physical Soc, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThe correlations between flow harmonics v(n) for n = 2, 3, and 4 and mean transverse momentum [pT] in Xe-129 + Xe-129 and Pb-208 + Pb-208 collisions at root s = 5.44 and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are potentially sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from nonflow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and an event-activity selection based on particle production at very forward rapidity. The v(n)-[p(T)] correlations show strong dependencies on centrality, harmonic number n, pT, and pseudorapidity range. Current models qualitatively describe the overall centrality -and system-dependent trends but fail to quantitatively reproduce all features of the data. In central collisions, where models generally show good agreement, the v(2)-[p(T)] correlations are sensitive to the triaxiality of the quadruple deformation. Comparison of the model with the Pb + Pb and Xe + Xe data confirms that the Xe-129 nucleus is a highly deformed triaxial ellipsoid that has neither a prolate nor oblate shape. This provides strong evidence for a triaxial deformation of the Xe-129 nucleus from high-energy heavy-ion collisions.Öğe Cross-section measurements for the production of a Z boson in association with high-transverse-momentum jets in pp collisions at ?s=13 TeV with the ATLAS detector(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliCross-section measurements for a Z boson produced in association with high-transverse-momentum jets ((pT) >= 100 GeV) and decaying into a charged-lepton pair (e(+) e(-), mu(+)mu(-)) are presented. The measurements are performed using proton-proton collisions at root s = 13TeV corresponding to an integrated luminosity of 139 fb(-1) collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the Z boson and the closest jet are performed in events with at least one jet with (pT) >= 500 GeV. Event topologies of particular interest are the collinear emission of a Z boson in dijet events and a boosted Z boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-nextto-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.Öğe Determination of the parton distribution functions of the proton using diverse ATLAS data from pp collisions at root s=7, 8 and 13 TeV(SPRINGER, 2022) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Çetin, Serkant Ali; Beddall, Andrew John; Öztürk, SertaçThis paper presents an analysis at next-to-next-to-leading order in the theory of quantum chromodynamics for the determination of a new set of proton parton distribution functions using diverse measurements in pp collisions at root s = 7, 8 and 13 TeV, performed by the ATLAS experiment at the Large Hadron Collider, together with deep inelastic scattering data from ep collisions at the HERA collider. The ATLAS data sets considered are differential cross-section measurements of inclusive W-+/- and Z/gamma* boson production, W-+/- and Z boson production in association with jets, t (t) over bar production, inclusive jet production and direct photon production. In the analysis, particular attention is paid to the correlation of systematic uncertainties within and between the various ATLAS data sets and to the impact of model, theoretical and parameterisation uncertainties. The resulting set of parton distribution functions is called ATLASpdf21.Öğe Differential t(t)over-tilde cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb-1 of ATLAS data(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliMeasurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (p(T)) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the t (t) over bar branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have p(T)> 500 GeV and p(T)> 350 GeV, respectively, is 331 +/- 3(stat.) +/- 39(syst.) fb. This is approximately 20% lower than the prediction of 398(-49)(+48) fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 +/- 0.02(stat.) +/- 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96(-0.17)(+0.02) pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.Öğe Evidence for the charge asymmetry in pp ? t(t)over-bar production at ?s=13 TeV with the ATLAS detector(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliInclusive and differential measurements of the top-antitop ( t (t) over bar) charge asymmetry A(C)(t (t) over bar) and the leptonic asymmetry A(C)(l (l) over bar) are presented in proton-proton collisions at root s = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb(-1), combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive t (t) over bar charge asymmetry is measured to be A(C)(t (t) over bar) = 0.0068 +/- 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the t (t) over bar system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.Öğe Exclusive dielectron production in ultraperipheral Pb plus Pb collisions at ?sNN=5.02 TeV with ATLAS(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliExclusive production of dielectron pairs, gamma gamma -> e(+) e(-), is studied using L-int = 1.72 nb(-1) of data from ultraperipheral collisions of lead nuclei at root s(NN) = 5.02TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon-photon interactions in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum p(T)(e) > 2.5 GeV, absolute electron pseudorapidity |eta(e)| < 2.5, dielectron invariant mass m(ee) > 5 GeV, and dielectron transverse momentum p(T)(ee) < 2 GeV. Differential cross-sections are measured as a function of mee, average peT, absolute dielectron rapidity |y(ee)|, and scattering angle in the dielectron rest frame, | cos theta* |, in the inclusive sample, and also with a requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be 215 +/- 1(stat.) (+23)(-20)(syst.) +/- 4(lumi.) mu b. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs Starlight and SuperChic, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences from these predictions which are more pronounced at high |y(ee)| and | cos theta* | values.Öğe Measurement of electroweak Z(v (v)over-bar)? jj production and limits on anomalous quartic gauge couplings in pp collisions at ?s=13 TeV with the ATLAS detector(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThe electroweak production of Z(v (v) over bar)gamma in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton-proton collisions at a centre-of-mass energy of 13TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb(-1) collected by the ATLAS detector during the 2015-2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial Z( v (v) over bar)gamma jj cross section for electroweak production is measured to be 0.77(-0.30)(+0.34) fb and is consistent with the Standard Model prediction. Evidence of electroweak Z( v (v) over bar)gamma jj production is found with an observed significance of 3.2 sigma for the background-only hypothesis, compared with an expected significance of 3.7 sigma. The combination of this result with the previously published ATLAS observation of electroweak Z(v (v) over bar)gamma jj production yields an observed (expected) signal significance of 6.3 sigma (6.6 sigma). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.Öğe Measurement of muon pairs produced via ?? scattering in nonultraperipheral Pb plus Pb collisions at ?sNN=5.02 TeV with the ATLAS detector(Amer Physical Soc, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliResults of a measurement of dimuon photoproduction in nonultraperipheral Pb + Pb collisions at root sNN = 5.02 TeV are presented. The measurement uses ATLAS data from the 2015 and 2018 Pb + Pb data-taking periods at the LHC with an integrated luminosity of 1.94 nb-1. The gamma gamma -> mu+mu- pairs are identified via selections on pair momentum asymmetry and acoplanarity. Differential cross sections for dimuon production are measured in different centrality, average muon momentum, and pair rapidity intervals as functions of acoplanarity and k perpendicular to, the transverse momentum kick of one muon relative to the other. Measurements are also made as a function of the rapidity separation of the muons and the angle of the muon pair relative to the second-order event plane to test whether magnetic fields generated in the quark-gluon plasma affect the measured muons. A prior observation of a centrality-dependent broadening of the acoplanarity distribution is confirmed. Furthermore, the improved precision of the measurement reveals a depletion in the number of pairs having small acoplanarity or k perpendicular to values in more central collisions. The acoplanarity distributions in a given centrality interval are observed to vary with the mean pT of the muons in the pair, but the k perpendicular to distributions do not. Comparisons with recent theoretical predictions are made. The predicted trends associated with effects of magnetic fields on the dimuons are not observed.Öğe Measurement of single top-quark production in the s-channel in proton-proton collisions at ?s=13 TeV with the ATLAS detector(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliA measurement of single top-quark production in the s-channel is performed in proton-proton collisions at a centre-of-mass energy of 13TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb(-1). The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two b-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is sigma = 8.2(-2.9)(+3.5) pb, consistent with the Standard Model prediction of sigma(SM) = 10.32(-0.36)(+0.40) pb.Öğe Measurement of substructure-dependent jet suppression in Pb plus Pb collisions at 5.02 TeV with the ATLAS detector(Amer Physical Soc, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThe ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon-nucleon center-of-mass energy root sNN = 5.02 TeV in comparison with proton-proton (pp) collisions at root s = 5.02 TeV. The Pb+Pb data, collected in 2018, have an integrated luminosity of 1.72 nb(-1), while the pp data, collected in 2017, have an integrated luminosity of 260 pb(-1). Jets used in this analysis are clustered using the anti-k(t) algorithm with a radius parameter R = 0.4. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale rg of the first hard splitting inside the jet by reclustering them using the Cambridge-Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, RAA, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in rg, jet transverse momentum, and in intervals of collision centrality. The RAA value is observed to depend significantly on jet r(g). Jets produced with the largest measured r(g) are found to be twice as suppressed as those with the smallest rg in central Pb+Pb collisions. The RAA values do not exhibit a strong variation with jet p(T) in any of the rg intervals. The r(g) and p(T) dependence of jet RAA is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach.Öğe Measurement of the c-jet mistagging efficiency in t(t)over-bar events using pp collision data at root s=13 TeV collected with the ATLAS detector(Springer, 2022) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Çetin, Serkant AliA technique is presented to measure the effi-ciency with whichc-jets are mistagged asb-jets (mistaggingefficiency) usingt ?tevents, where one of theWbosons decaysinto an electron or muon and a neutrino and the other decaysinto a quark–antiquark pair. The measurement utilises therelatively large and knownW?csbranching ratio, whichallows a measurement to be made in an inclusivec-jet sample.The data sample used was collected by the ATLAS detectorat?s=13 TeV and corresponds to an integrated luminos-ity of 139 fb?1. Events are reconstructed using a kinematiclikelihood technique which selects the mapping between jetsandt ?tdecay products that yields the highest likelihood value.The distribution of theb-tagging discriminant for jets fromthe hadronicWdecays in data is compared with that in sim-ulation to extract the mistagging efficiency as a function ofjet transverse momentum. The total uncertainties are in therange 3–17%. The measurements generally agree with thosein simulation but there are some differences in the region cor-responding to the most stringentb-jet tagging requirement.Öğe Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThis paper presents a measurement of b-jet production in Pb+Pb and pp collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. The measurement uses 260 pb(-1) of pp collisions collected in 2017 and 1.4 nb(-1) of Pb+Pb collisions collected in 2018. In both collision systems, jets are reconstructed via the anti-kt algorithm. The b-jets are identified from a sample of jets containing muons from the semileptonic decay of b-quarks using template fits of the muon momentum relative to the jet axis. In pp collisions, b-jets are reconstructed for radius parameters R=0.2 and R=0.4, and only R=0.2 jets are used in Pb+Pb collisions. For comparison, inclusive R=0.2 jets are also measured using 1.7 nb(-1) of Pb+Pb collisions collected in 2018 and the same pp collision data as the b-jet measurement. The nuclear modification factor, RAA, is calculated for both b-jets and inclusive jets with R=0.2 over the transverse momentum range of 80-290 GeV. The nuclear modification factor for b-jets decreases from peripheral to central collisions. The ratio of the b-jet RAA to inclusive jet RAA is also presented and suggests that the RAA for b-jets is larger than that for inclusive jets in central Pb+Pb collisions. The measurements are compared with theoretical calculations and suggest a role for mass and colour-charge effects in partonic energy loss in heavy-ion collisions.Öğe Measurement of the polarisation of Wbosons produced in top-quark decays using dilepton events at ?s=13TeV with the ATLAS experiment(Elsevier, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhormae, A.; Çetin, Serkant AliA measurement of the polarisation of Wbosons produced in top-quark decays is presented, using proton-proton collision data at a centre-of-mass energy of v s= 13TeV. The data were collected by the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 139fb(-1). The measurement is performed selecting t tevents decaying into final states with two charged leptons (electrons or muons) and at least two b-tagged jets. The polarisation is extracted from the differential cross-section distribution of the cos theta* variable, where theta(*) is the angle between the momentum direction of the charged lepton from the Wboson decay and the reversed momentum direction of the b-quark from the top-quark decay, both calculated in the Wboson rest frame. Parton-level results, corrected for the detector acceptance and resolution, are presented for the cos theta* angle. The measured fractions of longitudinal, left- and right-handed polarisation states are found to be f(0) = 0.684 +/- 0.005 (stat.)+/- 0.014 (syst.), f(L)= 0.318 +/- 0.003 (stat.)+/- 0.008 (syst.) and f(R)=-0.002 +/- 0.002 (stat.)+/- 0.014 (syst.), in agreement with the Standard Model prediction. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).Öğe Measurement of the t(t)over-bar production cross-section in pp collisions at ?s=5.02 TeV with the ATLAS detector(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abeling, K.; Abidi, S. H.; Aboulhorma, A.; Çetin, Serkant AliThe inclusive top-quark pair ( t (t) over bar) production cross-section sigma(t (t) over bar) is measured in proton-proton collisions at a centre-of-mass energy root s = 5.02TeV, using 257 pb(-1) of data collected in 2017 by the ATLAS experiment at the LHC. The tt (t) over bar cross-section is measured in both the dilepton and single-lepton final states of the t t system and then combined. The combination of the two measurements yields sigma(t (t) over bar) = 67.5 +/- 0.9 (stat.) +/- 2.3 (syst.) +/- 1.1 (lumi.) +/- 0.2 (beam) pb, where the four uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, and imperfect knowledge of both the integrated luminosity and the LHC beam energy, giving a total uncertainty of 3.9%. The result is in agreement with theoretical quantum chromodynamic calculations at next-to-next-to-leading order in the strong coupling constant, including the resummation of next-to-next-to-leading logarithmic soft-gluon terms, and constrains the parton distribution functions of the proton at large Bjorken-x.