Yazar "Abdollahzadeh, Benyamin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An improved farmland fertility algorithm with hyper-heuristic approach for solving travelling salesman problem(TECH SCIENCE PRESS, 2022) Gharehchopogh, Farhad Soleimanian; Abdollahzadeh, Benyamin; Arasteh, Bahmanravelling Salesman Problem (TSP) is a discrete hybrid optimization problem considered NP-hard. TSP aims to discover the shortest Hamilton route that visits each city precisely once and then returns to the starting point, making it the shortest route feasible. This paper employed a Farmland Fertility Algorithm (FFA) inspired by agricultural land fertility and a hyper-heuristic technique based on the Modified Choice Function (MCF). The neighborhood search operator can use this strategy to automatically select the best heuristic method for making the best decision. Lin-Kernighan (LK) local search has been incorporated to increase the efficiency and performance of this suggested approach. 71 TSPLIB datasets have been compared with different algorithms to prove the proposed algorithm's performance and efficiency. Simulation results indicated that the proposed algorithm outperforms comparable methods of average mean computation time, average percentage deviation (PDav), and tour length.Öğe A multi-objective mutation-based dynamic Harris Hawks optimization for botnet detection in IoT(Elsevier, 2023) Gharehchopogh, Farhad Soleimanian; Abdollahzadeh, Benyamin; Barshandeh, Saeid; Arasteh, BahmanThe increasing trend toward using the Internet of Things (IoT) increased the number of intrusions and intruders annually. Hence, the integration, confidentiality, and access to digital resources would be threatened continually. The significance of security implementation in digital platforms and the need to design defensive systems to discover different intrusions made the researchers study updated and effective methods, such as Botnet Detection for IoT systems. Many problem space features and network behavior unpredictability made the Intrusion Detection System (IDS) the main problem in maintaining computer networks' security. Furthermore, many insignificant features have turned the feature selection (FS) problem into a vast IDS aspect. This paper introduces a novel binary multi-objective dynamic Harris Hawks Optimization (HHO) enhanced with mutation operator (MODHHO) and applies it to Botnet Detection in IoT. Afterward, the Feature Selection (FS) is undertaken, and the K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Decision Tree (DT) classifiers are used to estimate the potential of the selected features in the precise detection of intrusions. The simulation results illustrated that the MODHHO algorithm performs well in Botnet Detection in IoT and is preferred to other approaches in its performance metrics. Besides, the computational complexity analysis results suggest that the MODHHO algorithm's overhead is more optimal than similar approaches. The MODHHO algorithm has performed better in comparison with other compared algorithms in all 5 data sets. In contrast with the machine learning methods of the proposed model in all five data sets, it has had a better error rate according to the AUC, G-mean, and TPR criteria. And according to the comparison made with filter-based methods, it has performed almost better in three datasets.