Yazar "Afaneh, F." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Enhancing mechanical, physical, radiation attenuation properties in alumino-barium-titanium-calcium-lithium glasses for nuclear applications: The pivotal role of TiO2 additives(Pergamon-Elsevier Science Ltd, 2024) Sen Baykal, Duygu; Afaneh, F.; Susoy, Gulfem; Al-Omari, S.; Almisned, Ghada; Kilic, G.; Khattari, Z. Y.This study focused on enhancing key material properties of Alumino-Barium-Titanium-Calcium-Lithium glasses for nuclear applications, specifically by integrating increasing amounts of TiO2 additives. Utilizing the MCNPX general-purpose Monte Carlo code, version 2.7.0, the research aimed to ascertain Transmission Factor (TF) values across a spectrum of well-known radioisotope energies. This analysis was conducted for glass samples with varying thicknesses, ranging from 0.5 cm to 3 cm. The study also delved into the gamma-ray shielding characteristics of these glasses at energy levels between 0.015 and 15 MeV, uncovering notable findings. In exploring the T1 to T12 glass system, various physical and optical methods were employed to measure key parameters like glass density (rho glass), molar volume (Vm), oxygen molar volume (OMV), and oxygen packing density (OPD). A significant outcome of this research was the observation that with an increase in TiO2 content, there was a corresponding rise in glass density, from 3.727 g/cm3 to 3.825 g/cm3. Furthermore, the study noted alterations in the physical and mechanical properties of the glasses. Most notably, the T12 glass sample, which contained the highest concentration of TiO2, exhibited superior gamma-ray shielding properties compared to the other glass compositions analysed.Öğe Indirect effect of elevated pressure via the modulations of crystals intrinsic parameters on radiation shielding efficacy: A comparative study between two α-quartz homeotypes SiO2 and GeO2(Elsevier Ltd., 2025) Afaneh, F.; Al Omari, S.; ALMisned, Ghada; Tekin, Hüseyin Ozan; Khattari, Z.Y.This study investigates the indirect effects of elevated pressure on the radiation shielding competence of two α-quartz homeotypes, SiO2 and GeO2, by examining the modulations of their crystal intrinsic tetrahedral parameters. The study focuses on structural modifications and their correlations with radiation attenuation properties. The results show that both homeotypes exhibit energy-dependent mass attenuation coefficients (MAC) and linear attenuation coefficients (LAC). SiO2 demonstrates higher transparency to incident radiation compared to GeO2, with a relative difference in MAC values of 91% at 0.015 MeV, decreasing to 28% at 15 MeV. However, within the energy range of 0.4 < E < 4 MeV, SiO2 exhibits higher MAC values than GeO2, with the MAC of SiO2 surpassing GeO2 by 17% at 0.4 MeV. The pressure dependence of LAC values indicates that both SiO2 and GeO2 become more effective in attenuating radiation under higher pressure conditions. For instance, at 0.015 MeV, the LAC of GeO2 increased from 274.826 cm−1 at 0.001 GPa to 308.073 cm−1 at 5.57 GPa. GeO2 generally exhibits higher LAC values than SiO2 across the energy and pressure ranges studied. It can be concluded that the structural modifications induced by elevated pressure significantly enhance the radiation shielding capabilities of α-quartz homeotypes, particularly GeO2, making them promising candidates for advanced shielding materials in various high-radiation environments. © 2024 Elsevier Ltd