Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ahmad Khan, Faiq" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Interpretable Motor Sound Classification for Enhanced Fault Detection Leveraging Explainable AI
    (Institute of Electrical and Electronics Engineers Inc., 2024) Khan, Shaiq Ahmad; Ahmad Khan, Faiq; Jamil, Akhtar; Hameed, Alaa Ali
    In industries, machines communicate through sounds, decoded by predictive maintenance to prevent issues. Understanding motor sounds is crucial for seamless industrial operations. This research undertakes a comprehensive explo-ration of machine learning models, specifically Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random Forest, applied to motor sound data for classifying instances as either healthy or faulty. The ANN, boasting an 81.22 % accuracy, reveals commendable precision and recall values for both classes, indicating its robust predictive capabilities. However, there is room for improvement, particu-larly in accurately classifying healthy motors. SVM marginally outperforms the ANN with an accuracy of 81.32%, showcasing balanced precision and recall for both classes. Notably, KNN, while exhibiting a slightly lower accuracy of 80.22 %, excels in recall for the healthy class, emphasizing its efficacy in correctly identifying healthy motor sounds. Random Forest attains an accuracy of 81.32 %, featuring notably high recall for the healthy class (0.91), underscoring its proficiency in capturing instances of healthy motor sounds. In-depth metrics provide nuanced insights into the strengths and specificities of each model, offering a foundation for informed decisions based on application priorities and requirements. The study contributes not only quantitative metrics but also interpretability tools, including LIME and SHAP, to enhance transparency and elucidate the intricate patterns within motor sound data. © 2024 IEEE.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim