Yazar "Ahmadi, P." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An innovative transient simulation of a solar energy system with a thermochemical hydrogen production cycle for zero-energy buildings(Elsevier Ltd, 2024) Mohammadi, Z.; Ahmadi, P.; Ashjaee, M.This research investigates the incorporation of solar power systems into buildings to meet the energy needs of near-zero-energy buildings. The study focuses on a complex buildings in Shiraz City, Iran. The primary objective of this case study is to integrate an innovative method of hydrogen production known as thermochemical hydrogen production methods to fulfill the building's energy demands. Solar energy is utilized to generate heat by parabolic trough collectors, which is the sole energy source required for the V–Cl thermochemical cycle. Consequently, hydrogen is produced and stored during the day for use at night when there is no solar radiation. To address this, a novel component has been developed for the vanadium chlorine cycle (V–Cl) within the TRNSYS software. The energy system was simulated using the TRNSYS software, a powerful transient simulation tool. Despite the numerous advantages offered by TRNSYS's energy system simulation, it lacks optimization capabilities. The use of a neural network-genetic algorithm optimization approach allows for the calculation of an optimized area for collectors and the power output of fuel cells for the building complex. The optimum configuration results in minimum installation cost, lowest CO2 emissions, and the highest power supply renewable (PSR). The results reveal that the installation of collectors with a surface area of 70 m2 and the utilization of fuel cells with a power output of 345 kW lead to a total carbon dioxide (CO2) generation of 10.31 tons per year, a PSR of 1.21, and a cost of $4.915 per hour. © 2024 Hydrogen Energy Publications LLCÖğe A realistic analysis of hydrogen production based on flare gas considering life cycle assessment(Elsevier, 2023) Kabeh, Kaveh Zayer; Teimouri, Aidin; Changizian, Sina; Ahmadi, P.Among the different methods for flare gas recovery, the comprehensive evaluation of hydrogen production has yet to be studied. The techno-economic evaluation and life cycle assessment of using flare gas to produce hydrogen are performed in this study. The Aspen HYSYS software is used to simulate the different units of hydrogen production, and the economic assessment is performed to calculate the hydrogen production expen-ditures. The results illustrated that the mass flow rate and the capacity of the hydrogen production plant are 117600 kg/h and 4856.4 MW, respectively. The obtained results demonstrate that the hydrogen production costs can be considered reasonable using flare gas with a low price and large flow rate. In this regard, the breakeven price of hydrogen is US$ 0.27, and the share of Capital expenditure in hydrogen production cost is 55.4%, as well. Moreover, the life cycle assessment (LCA) of hydrogen production has been conducted to evaluate the environmental effects of hydrogen production. Thanks to the novel CO2 capturing process considered in this study, GHG and CO2 productions have been reduced, respectively, by 59 and 63 percent, demonstrating the necessity of using the CO2 capturing process.Öğe Thermo-economics, emissions, and sustainability comparison of a novel hybrid evaporative cooled solid oxide fuel cell-recuperated gas turbine with conventional system(Institution of Chemical Engineers, 2024) Sinha, A.A.; Choudhary, T.; Shukla, A.K.; Ahmadi, P.A novel integration of a solid-oxide fuel cell to an evaporative intercooled recuperated gas turbine (SOFC-EIc-RGT) is presented. The goal of this integrated system is to reduce power consumption associated with the work of compression and hence augment power plant performance. The proposed system is compared with a conventional evaporative intercooled recuperated gas turbine (EIc-RGT). Both energetic and exergetic performance of the systems were carried out. A range of sustainability indexes were evaluated for each component of both configurations. The sustainability index helps to identify the impact on the environment. A novel entropy generation number, a dimensionless number, was proposed to identify “the ratio of component's irreversibility to the heat supplied.” The maximum energy and exergy efficiencies for SOFC-EIc-RGT were nearly double that of the EIc-RGT. A novel performance map and emission map were plotted for power plant design engineers and researchers to analyse CO and NOx emissions with various operating parameters for EIc-RGT and SOFC-EIc-RGT. This economic analysis makes the system more reliable, which includes environmental and fuel cost rates. © 2024 The Institution of Chemical Engineers