Yazar "Akleylek, S." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Password authenticated key exchangebased on Kyber for mobile devices(PeerJ Inc., 2024) Seyhan, K.; Akleylek, S.; Dursun, A.F.In this article, a password-authenticated key exchange (PAKE) version of the National Institute of Standards and Technology (NIST) post-quantum cryptography (PQC) public-key encryption and key-establishment standard is constructed. We mainly focused on how the PAKE version ofPQCstandard Kyber with mobile compatibility can be obtained by using simple structured password components. In the design process, the conventional password-based authenticated key exchange (PAK) approach is updated under the module learning with errors (MLWE) assumptions to add passwordbased authentication. Thanks to the following PAK model, the proposed Kyber.PAKE provides explicit authentication and perfect forward secrecy (PFS). The resistance analysis against the password dictionary attack of Kyber.PAKE is examined by using random oracle model (ROM) assumptions. In the security analysis, the cumulative distribution function (CDF) Zipf (CDF-Zipf) model is also followed to provide realistic security examinations. According to the implementation results, Kyber.PAKE presents better run-time than lattice-based PAKE schemes with similar features, even if it contains complex key encapsulation mechanism (KEM) components. The comparison results show that the proposed PAKE scheme will come to the fore for the future security of mobile environments and other areas. © Copyright 2024 Seyhan et al.Öğe Securing Cloud-based Healthcare Applications with a Quantum-resistant Authentication and Key Agreement Framework(Elsevier B.V., 2024) Bahache, A.N.; Chikouche, N.; Akleylek, S.A biosensor is a method for transmitting various physical phenomena, such as body temperature, electrocardiogram (ECG), pulse, blood pressure, electroencephalogram (EEG), and respiratory rate. This transmission occurs through the utilization of a Wireless Body Area Network (WBAN) when remotely diagnosing patients via Internet-of-Medical-Things (IoMT). However, the transmission of sensitive data from IoMT through WBAN via an insecure channel exposes it to various threats, necessitating the implementation of robust measures to guarantee security against potential adversaries. To address the security concerns associated with patient monitoring in healthcare systems and achieve the necessary security and privacy requirements during communication, a robust authentication framework is indispensable. Hence, it introduces an agile and robust post-quantum authentication framework for cloud-based healthcare applications, effectively mitigating the vulnerabilities identified in the recent literature. This framework is designed to protect against quantum attacks using the Kyber. A formal security verification of the proposed protocol is presented using AVISPA, as well as informally. Additionally, a comparison with the previous works is made regarding both performance and security. The comparison results conclusively show that our proposed framework is better regarding both measures. © 2024 Elsevier B.V.