Yazar "Al-Dulaimi, Abdullah Ahmed" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adaptive FEM-BPNN model for predicting underground cable temperature considering varied soil composition(Elsevier - Division Reed Elsevier India Pvt Ltd, 2024) Al-Dulaimi, Abdullah Ahmed; Guneser, Muhammet Tahir; Hameed, Alaa Ali; Marquez, Fausto Pedro Garcia; Gouda, Osama E.In underground cables of power systems, the maximum temperature of the cable is a crucial factor in determining its capacity. According to standards, the permissible operating temperature for the XLPE cable conductor under steady-state conditions is 90 degree celsius - a limit that should not be exceeded. Exceeding this temperature may lead to a thermal breakdown in the cable insulation, thereby resulting in interruption of the electrical power supply. Many factors affect the cable temperature, particularly through the processes of heat dissipation and diffusion from the cable into its surroundings. These factors include soil types and compositions, cable installation configuration, and thermo physical properties; therefore, accurate analysis of these factors is crucial for cable loading. In this study, the finite element method (FEM) is employed to predict the cable temperature considering different soil compositions and to present a new approach for the thermal analysis of an underground cable system. The novel approach considers various environmental conditions including single-layer and multi-layer soil types, homogeneous and non-homogeneous soil compositions, two configuration types - flat and trefoil - as well as two types of backfill materials, specifically sand-cement mixture backfill (SCMB) and fluidized thermal backfill (FTB), and dry zones to offer deeper insight into a thermal analysis. Given that the FEM requires the construction of a complex geometric model within an optimal operating condition to obtain results with high accuracy-a process that can often be complex as well as not adaptable because it depends on constant mathematical calculation-This paper presents a novel approach FEM-BPNN that uses an adaptive Backpropagation neural networks (BPNN) model as its mainstay. The proposed BPNN model exploits historical data from FEM to refine its predictive power, therefore, increasing its efficiency and accuracy. Furthermore, the model is subject to an optimization process, adjusting and refining its internal parameters in response to new data, with the ultimate goal of improving the predictive model capabilities for the temperature of underground power cables. The results underscored the high performance of FEM in the simulation, and it was observed that FEM yielded results closely aligned with those of the IEC standard. Moreover, the proposed FEM-BPNN demonstrated exceptional accuracy, achieving a low RMSE score of 0.008. It also exhibited impressive performance in the linear regression analysis, with an R-2 value of 0.99. These metrics collectively signify the robustness and efficacy of the model.Öğe Assessing the spreading behavior of the Covid-19 epidemic: a case study of Turkey(Institute of Electrical and Electronics Engineers Inc., 2022) Demir, Erdem; Canıtez, Muhammed Nafiz; Elazab, Mohamed; Hameed, Alaa Ali; Jamil, Akhtar; Al-Dulaimi, Abdullah AhmedCoronavirus (Covid-19) disease is a rapidly spreading type of virus that was discovered in Wuhan, China, and emerged towards the end of 2019. During this period, various studies were conducted, and intensive studies are continued in different fields regarding coronavirus, especially in the field of medicine. The virus continues to spread and is yet to be controlled fully. Machine learning is a well-explored field in the domain of computer science that can learn patterns based on existing data and make predictions on new data. This study focused on using various machine learning approaches for predicting the spreading behavior of the COVID-19 virus. The models that were considered include SARIMAX, Extreme Gradient Boosting (XGBoost), Linear Regression (LR), Decision Tree (DT), Gradient Boosting (GB), and Artificial Neural Network (ANN). The models were trained and then predictions were made by applying these models to the daily updated data provided by the Turkish Ministry of Health. Experiments on the test data showed that both XGBoost and Decision Tree models outperformed other models.Öğe Automated Classification of Snow-Covered Solar Panel Surfaces Based on Deep Learning Approaches(Tech Science Press, 2023) Al-Dulaimi, Abdullah Ahmed; Guneser, Muhammet Tahir; Hameed, Alaa Ali; Salman, Mohammad ShukriRecently, the demand for renewable energy has increased due to its environmental and economic needs. Solar panels are the mainstay for dealing with solar energy and converting it into another form of usable energy. Solar panels work under suitable climatic conditions that allow the light photons to access the solar cells, as any blocking of sunlight on these cells causes a halt in the panels work and restricts the carry of these photons. Thus, the panels are unable to work under these conditions. A layer of snow forms on the solar panels due to snowfall in areas with low temperatures. Therefore, it causes an insulating layer on solar panels and the inability to produce electrical energy. The detection of snow-covered solar panels is crucial, as it allows us the opportunity to remove snow using some heating techniques more efficiently and restore the photovoltaics system to proper operation. This paper presents five deep learning models,-16,-19, ESNET-18, ? ESNET-50, and ? ESNET-101, which are used for the recognition and classification of solar panel images. In this paper, two different cases were applied; the first case is performed on the original dataset without trying any kind of preprocessing, and the second case is extreme climate conditions and simulated by generating motion noise. Furthermore, the dataset was replicated using the upsampling technique in order to handle the unbalancing issue. The conducted dataset is divided into three different categories, namely; all_snow, no_snow, and partial snow. The five models are trained, validated, and tested on this dataset under the same conditions 60% training, 20% validation, and testing 20% for both cases. The accuracy of the models has been compared and verified to distinguish and classify the processed dataset. The accuracy results in the first case show that the compared models-16,-19, ESNET-18, andESNET-50 give 0.9592, while R ESNET-101 gives 0.9694. In the second case, the models outperformed their counterparts in the first case by evaluating performance, where the accuracy results reached 1.00, 0.9545, 0.9888, 1.00. and 1.00 for-16,-19, R ESNET-18 and R ESNET-50, respectively. Consequently, we conclude that the second case models outperformed their peers.Öğe Performance Analysis of Classification and Detection for PV Panel Motion Blur Images Based on Deblurring and Deep Learning Techniques(Mdpi, 2023) Al-Dulaimi, Abdullah Ahmed; Guneser, Muhammet Tahir; Hameed, Alaa Ali; Marquez, Fausto Pedro Garcia; Fitriyani, Norma Latif; Syafrudin, MuhammadDetecting snow-covered solar panels is crucial as it allows us to remove snow using heating techniques more efficiently and restores the photovoltaic system to proper operation. This paper presents classification and detection performance analyses for snow-covered solar panel images. The classification analysis consists of two cases, and the detection analysis consists of one case based on three backbones. In this study, five deep learning models, namely visual geometry group-16 (VGG-16), VGG-19, residual neural network-18 (RESNET-18), RESNET-50, and RESNET-101, are used to classify solar panel images. The models are trained, validated, and tested under different conditions. The first case of classification is performed on the original dataset without preprocessing. In the second case, extreme climate conditions are simulated by generating motion noise; furthermore, the dataset is replicated using the upsampling technique to handle the unbalancing issue. For the detection case, a region-based convolutional neural network (RCNN) detector is used to detect the three categories of solar panels, which are all_snow, no_snow, and partial. The dataset of these categories is taken from the second case in the classification approach. Finally, we proposed a blind image deblurring algorithm (BIDA) that can be a preprocessing step before the CNN (BIDA-CNN) model. The accuracy of the models was compared and verified; the accuracy results show that the proposed CNN-based blind image deblurring algorithm (BIDA-CNN) outperformed other models evaluated in this study.Öğe The thermal modeling for underground cable based on ANN prediction(Springer Science and Business Media Deutschland GmbH, 2022) Al-Dulaimi, Abdullah Ahmed; Guneser, Muhammet Tahir; Hameed, Alaa AliMany factors affect the ampacity of the underground cable (UC) to carry current, such as the backfill material (classical, thermal, or a combination thereof) and the depth at which it is buried. Moreover, the thermal of the UC is an effective element in the performance and effectiveness of the UC. However, it is difficult to find thermal modeling and prediction in the UC under the influence of many parameters such as soil resistivity (?soil), insulator resistivity (?insulator), and ambient temperature. In this paper, the calculation of the UC steady-state rating current is the most important part of the cable installation design. This paper also applied an artificial neural network (ANN) to develop and predict for 33 kV UC rating models. The proposed system was built by using the MATLAB package. The ANN-based UC rating is achieves the best performance and prediction for the UC rating current. The performance of the proposed model is superior to other models. The experiment was conducted with 200 epochs. The proposed model achieved high performance with low MSE (0.137) and the regression curve gives an excellent performance (0.99). © 2022, Springer Nature Switzerland AG.