Yazar "Alharbi, Ahmad M." seçeneğine göre listele
Listeleniyor 1 - 10 / 10
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Antiamoebic properties of ceftriaxone and zinc-oxide-cyclodextrin-conjugated ceftriaxone(MDPI, 2022) Makhlouf, Zinb; Akbar, Noor; Khan, Naveed Ahmed; Shah, Muhammad Raza; Alharbi, Ahmad M.; Alfahemi, Hasan; Siddiqui, RuqaiyyahAcanthamoeba castellanii is a ubiquitous free-living amoeba capable of instigating keratitis and granulomatous amoebic encephalitis in humans. Treatment remains limited and inconsistent. Accordingly, there is a pressing need for novel compounds. Nanotechnology has been gaining attention for enhancing drug delivery and reducing toxicity. Previous work has shown that various antibiotic classes displayed antiamoebic activity. Herein, we employed two antibiotics: ampicillin and ceftriaxone, conjugated with the nanocarrier zinc oxide and beta-cyclodextrin, and tested them against A. castellanii via amoebicidal, amoebistatic, encystment, excystment, cytopathogenicity, and cytotoxicity assays at a concentration of 100 mu g/mL. Notably, zinc oxide beta-cyclodextrin ceftriaxone significantly inhibited A. castellanii growth and cytopathogenicity. Additionally, both zinc oxide beta-cyclodextrin ceftriaxone and ceftriaxone markedly inhibited A. castellanii encystment. Furthermore, all the tested compounds displayed negligible cytotoxicity. However, minimal anti-excystment or amoebicidal effects were observed for the compounds. Accordingly, this novel nanoconjugation should be employed in further studies in hope of discovering novel anti-Acanthamoeba compounds.Öğe Antimicrobial Activity of Novel Deep Eutectic Solvents(Mdpi, 2023) Akbar, Noor; Khan, Naveed Ahmed; Ibrahim, Taleb; Khamis, Mustafa; Khan, Amir Sada; Alharbi, Ahmad M.; Alfahemi, HasanHerein, we utilized several deep eutectic solvents (DES) that were based on hydrogen donors and hydrogen acceptors for their antibacterial application. These DES were tested for their bactericidal activities against Gram-positive (Streptococcus pyogenes, Bacillus cereus, Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) bacteria. Using lactate dehydrogenase assays, DES were evaluated for their cytopathic effects towards human cells. Results from antibacterial tests revealed that DES prepared from the combination of methyl-trioctylammonium chloride and glycerol (DES-4) and DES prepared form methyl-trioctylammonium chloride and fructose (DES-11) at a 2 mu L dose showed broad-spectrum antibacterial behavior and had the highest bactericidal activity. Moreover, DES-4 showed 40% and 68% antibacterial activity against P. aeruginosa and E. coli K1, respectively. Similarly, DES-11 eliminated 65% and 61% E. coli K1 and P. aeruginosa, respectively. Among Gram-positive bacteria, DES-4 showed important antibacterial activity, inhibiting 75% of B. cereus and 51% of S. pneumoniae. Likewise, DES-11 depicted 70% B. cereus and 50% S. pneumoniae bactericidal effects. Finally, the DES showed limited cytotoxic properties against human cell lines with the exception of the DES prepared from Methyltrioctylammonium chloride and Citric acid (DES-10), which had 88% cytotoxic effects. These findings suggest that DES depict potent antibacterial efficacies and cause minimal damage to human cells. It can be concluded that the selected DES in this study could be utilized as valuable and novel antibacterial drugs against bacterial infections. In future work, the mechanisms for bactericides and the cytotoxicity effects of these DES will be investigated.Öğe Applications of photodynamic therapy in keratitis(Springer, 2024) Anwar, Ayaz; Khan, Naveed Ahmed; Alharbi, Ahmad M.; Alhazmi, Ayman; Siddiqui, RuqaiyyahKeratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.Öğe Can Acanthamoeba Harbor Monkeypox Virus?(Mdpi, 2023) Siddiqui, Ruqaiyyah; Muhammad, Jibran Sualeh; Alharbi, Ahmad M.; Alfahemi, Hasan; Khan, Naveed AhmedAcanthamoeba is well known to host a variety of microorganisms such as viruses, bacteria, protozoa, and yeast. Given the recent number of cases of monkeypox infection, we speculate that amoebae may be aiding viral transmission to the susceptible hosts. Although there is no confirmatory evidence to suggest that Acanthamoeba is a host to monkeypox (a double-stranded DNA virus), the recent discovery of mimivirus (another double-stranded DNA virus) from Acanthamoeba, suggests that amoebae may shelter monkeypox virus. Furthermore, given the possible spread of monkeypox virus from animals to humans during an earlier outbreak, which came about after patients came in contact with prairie dogs, it is likely that animals may also act as mixing vessel between ubiquitously distributed Acanthamoeba and monkeypox virus, in addition to the environmental habitat that acts as an interface in complex interactions between diverse microorganisms and the host.Öğe Effect of microgravity on the gut microbiota bacterial composition in a hindlimb unloading model(MDPI, 2022) Siddiqui, Ruqaiyyah; Qaisar, Rizwan; Khan, Naveed Ahmed; Alharbi, Ahmad M.; Alfahemi, Hasan; Elmoselhi, AdelWe utilised a ground-based microgravity hindlimb unloading (HU) mouse model to elucidate the gut microbiota bacterial changes in mice under a simulated microgravity environment. Four-month-old, male C57/Bl6 mice were randomly divided into ground-based controls and the HU groups and kept under controlled environmental conditions. For the microgravity environment, the mice were suspended in special cages individually for 20 days. At the end of the suspension, the mice were sacrificed; gut dissections were performed, followed by a metagenomic analysis of bacterial species, which was carried out by extracting DNA and 16S rRNA analysis. The results revealed that the gut bacterial communities of mice under gravity and microgravity were different. Notably, our findings revealed differences in the bacterial community structure. Around 449 bacterial OTUs were specific to mice kept under normal gravity versus 443 bacterial OTUs under microgravity conditions. In contrast, 694 bacterial OTUs were common to both groups. When the relative abundance of taxa was analyzed, Bacteroidetes dominated the gut (64.7%) of normal mice. Conversely, mice in the microgravity environment were dominated by Firmicutes (42.7%), and the relative abundance of Bacteroidetes differed significantly between the two groups (p < 0.05). The distribution of Muribaculaceae between normal mice versus microgravity mice was significantly different, at 62% and 36.4%, respectively (p < 0.05). Furthermore, a significant decrease in 11 bacteria was observed in mice under simulated microgravity, including Akkermansia muciniphila, Eubacterium coprostanoligenes, Bacteroides acidifaciens, Clostridium leptum, Methylorubrum extorquens, Comamonas testosterone, Desulfovibrio fairfieldensis, Bacteroides coprocola, Aerococcus urinaeequi, Helicobacter hepaticus, and Burkholderiales. Further studies are needed to elucidate gut bacterial metabolites of these identified bacterial species in microgravity conditions and normal environment. Notably, the influence of these metabolites on obesity, neuroprotection, musculoskeletal and cardiovascular dysfunction, longevity, inflammation, health, and disease in astronauts ought to be investigated and will be important in developing procedures against adverse effects in astronauts following space travel.Öğe Gut microbiome of Crocodylus porosus and cellular stress: inhibition of nitric oxide, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells(Springer, 2023) Siddiqui, Ruqaiyyah; Akbar, Noor; Maciver, Sutherland K.; Alharbi, Ahmad M.; Alfahemi, Hasan; Khan, Naveed AhmedCrocodiles are renowned for their resilience and capacity to withstand environmental stressors, likely influenced by their unique gut microbiome. In this study, we determined whether selected gut bacteria of Crocodylus porosus exhibit anti-inflammatory effects in response to stress, by measuring nitric oxide release, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells. Using the Griess assay, the findings revealed that among several C. porosus gut bacterial isolates, the conditioned media containing the metabolites of two bacterial strains (CP27 and CP36) inhibited nitric oxide production significantly, in response to the positive control, i.e., taxol-treatment. Notably, CP27 and CP36 were more potent at reducing nitric oxide production than senloytic compounds (fisetin, quercetin). Using enzyme linked immunosorbent assays, the production of pro-inflammatory cytokines (IL-1 beta, TNF-alpha, PGE2), was markedly reduced by treatment with CP27 and CP36, in response to stress. Both CP27 and CP36 contain a plethora of metabolites to exact their effects [(3,4-dihydroxyphenylglycol, 5-methoxytryptophan, nifedipine, 4-chlorotestosterone-17-acetate, 3-phenoxypropionic acid, lactic acid, f-Honaucin A, l,l-Cyclo(leucylprolyl), 3-hydroxy-decanoic acid etc.], indicative of their potential in providing protection against cellular stress. Further high-throughput bioassay-guided testing of gut microbial metabolites from crocodiles, individually as well as in combination, together with the underlying molecular mechanisms, in vitro and in vivo will elucidate their value in the rational development of innovative therapies against cellular stress/gut dysbiosis.Öğe Imidazothiazole derivatives exhibited potent effects against brain-eating amoebae(MDPI, 2022) Siddiqui, Ruqaiyyah; El-Gamal, Mohammed, I; Boghossian, Anania; Saeed, Balsam Qubais; Oh, Chang-Hyun; Abdel-Maksoud, Mohammed S.; Alharbi, Ahmad M.; Alfahemi, Hasan; Khan, Naveed AhmedNaegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri's viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri's viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC50 values for 1e, 1f, and 1h were determined to be 48.45 mu M, 60.87 mu M, and 50.96 mu M, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae.Öğe The increasing importance of the oral microbiome in periodontal health and disease(Future Sci Ltd, 2023) Siddiqui, Ruqaiyyah; Badran, Zahi; Boghossian, Anania; Alharbi, Ahmad M.; Alfahemi, Hasan; Khan, Naveed AhmedPlain language summaryThis paper discusses what we currently know about the microbiome and periodontal diseases. Plaque buildup can happen for various reasons, like eating sugary foods, changes in saliva and the microorganisms in the mouth and gut. To treat periodontal diseases, we currently use antimicrobial medications and scaling. For patients with periodontitis, root planing and deep pocket debridement are used. Dental probiotics are getting attention as a potential treatment option. They work by competing with harmful bacteria for nutrients and surfaces in the mouth, and there are also probiotics that target the gut microbiome. Herein, the aim is to discuss the current knowledge of microbiome and periodontal diseases. Current treatment strategies include mechanical therapy such as root planing, scaling, deep pocket debridement and antimicrobial chemotherapy as an adjuvant therapy. Among promising therapeutic strategies, dental probiotics and oral microbiome transplantation have gained attention, and may be used to treat bacterial imbalances by competing with pathogenic bacteria for nutrients and adhesion surfaces, as well as probiotics targeting the gut microbiome. Development of strategies to prevent and treat periodontal diseases are warranted as both are highly prevalent and can affect human health. Further studies are necessary to better comprehend the microbiome in order to develop innovative preventative measures as well as efficacious therapies against periodontal diseases. Tweetable abstractThe microbiome plays a critical in periodontal health and disease, and thus should be targeted in dental therapies.Öğe Lactase can target cellular differentiation of Acanthamoeba castellanii belonging to the T4 genotype(Springer, 2024) Simau, Fathimath Afaaf; Ahmed, Usman; Khan, Khalid Mohammed; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Alharbi, Ahmad M.; Alfahemi, HasanThe free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.Öğe Selected Gut Bacteria from Water Monitor Lizard Exhibit Effects against Pathogenic Acanthamoeba castellanii Belonging to the T4 Genotype(Mdpi, 2023) Akbar, Noor; Khan, Naveed Ahmed; Giddey, Alexander D.; Soares, Nelson C.; Alharbi, Ahmad M.; Alfahemi, Hasan; Siddiqui, RuqaiyyahWater monitor lizards (WMLs) reside in unhygienic and challenging ecological surroundings and are routinely exposed to various pathogenic microorganisms. It is possible that their gut microbiota produces substances to counter microbial infections. Here we determine whether selected gut bacteria of water monitor lizards (WMLs) possess anti-amoebic properties using Acanthamoeba castellanii of the T4 genotype. Conditioned media (CM) were prepared from bacteria isolated from WML. The CM were tested using amoebicidal, adhesion, encystation, excystation, cell cytotoxicity and amoeba-mediated host cell cytotoxicity assays in vitro. Amoebicidal assays revealed that CM exhibited anti-amoebic effects. CM inhibited both excystation and encystation in A. castellanii. CM inhibited amoebae binding to and cytotoxicity of host cells. In contrast, CM alone showed limited toxic effects against human cells in vitro. Mass spectrometry revealed several antimicrobials, anticancer, neurotransmitters, anti-depressant and other metabolites with biological functions. Overall, these findings imply that bacteria from unusual places, such as WML gut, produce molecules with anti-acanthamoebic capabilities.