Yazar "Almisned, G." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes(De Gruyter Open, 2022) Tekin, Hüseyin Ozan; Almisned, G.; Susoy, Gülfem; Zakaly, Hesham M.H.; Issa, Shams A.M.; Kılıç, Gökhan; Rammah, Yasser Saad; Lakshminarayana, Gandham; Ene, AntoanetaGamma-ray shielding properties of eight different metallic glasses based on CuxZr100-x: x = 35 (Cu35Zr65) - 70 (Cu70Zr30) were determined using Monte Carlo simulations and Phy-X/PSD software. A typical gamma-ray transmission setup has been modeled in MCNPX Monte Carlo code. The general trend of the linear attenuation coefficients (?) was reported as (?)Cu35Zr65 < (?)Cu40Zr60 < (?)Cu45Zr55 < (?)Cu50Zr50 < (?)Cu55Zr45 < (?)Cu60Zr40 < (?)Cu65Zr35 [removed] (MFP,HVL)Cu40Zr60 > (MFP,HVL)Cu45Zr55 > (MFP,HVL)Cu50Zr50 > (MFP,HVL)Cu55Zr45 > (MFP,HVL)Cu60Zr40 > (MFP,HVL)Cu65Zr35 > (MFP,HVL)Cu70Zr30 for all photon energy range. The Cu70Zr30 sample showed maximum values of both the effective conductivity (C eff) and effective electron density (N eff). In addition, the Cu70Zr30 sample has minimum exposure and energy absorption buildup factor (EBF and EABF) values at all studied gamma-ray energies. The results revealed that the Cu70Zr30 sample has superior attenuation properties among all studied samples. © 2022 Huseyin Ozan Tekin et al., published by De Gruyter.Öğe An investigation on protection properties of Tantalum (V) oxide reinforced glass screens on unexposed breast tissue for mammography examinations(Elsevier Sci Ltd, 2024) Alan, H. Y.; Almisned, G.; Yilmaz, A.; Susam, L. A.; Ilik, E.; Kilic, G.; Ozturk, G.Introduction: The utilization of radiation shielding material positioned between the both breasts are crucial for the reduction of glandular dose and the safeguarding of the contralateral breast during mammographic procedures. This study proposes an alternative substance for shielding the contralateral breast from radiation exposure during mammography screening.Methods: In this study, we present an analysis of the shielding effectiveness of transparent glass that has been doped with Tantalum (V) oxide encoded as BTZT6. The evaluation of this shielding material was conducted using the MCNPX code, specifically for the ipsilateral and contralateral breasts. The design of the left and right breast phantoms involved the creation of three-layer heterogeneous breast phantoms, consisting of varying proportions of glandular tissue (25%, 50%, and 75%). The design of BTZT6 and lead-acrylic shielding screens is implemented using the MCNPX code. The comparative analysis of dose outcomes is conducted to assess the protective efficacy of BTZT6 and lead-acrylic shielding screens.Results: The utilization of BTZT6 shielding material resulted in a reduction in both breast dose and skin dose exposure when compared to the lead-acrylic shield. Conclusion: Based on the findings acquired, the utilization of BTZT6 shielding material screens during mammography procedures involving X-rays with energy levels ranging from 26 to 30 keV is associated with a decrease in radiation dose.Implications for practice: It can be inferred that the utilization of BTZT6 demonstrates potential efficacy in mitigating excessive radiation exposure to the breasts and facilitating the quantification of glandular doses in mammography procedures.(c) 2023 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.Öğe Mechanical properties, elastic moduli, and gamma ray attenuation competencies of some TeO2-WO3-GdF3glasses: Tailoring WO3-GdF3substitution toward optimum behavioral state range(De Gruyter Open Ltd, 2023) Almisned, G.; Rabaa, E.; Sen, Baykal, D.; Kavaz, E.; Ilik, E.; Kilic, G.; Zakaly H.M.H.We report the mechanical properties, elastic moduli, and gamma ray attenuation properties of some TeO2-WO3-GdF3 glasses. Using the chemical composition of the selected glasses, the dissociation energy per unit volume (G t ) and the packing density (V t ) were calculated. Using the G t and V t values, Young's, Shear, Bulk, Longitudinal Modulus, and Poisson's ratio of the glasses are calculated. Next several fundamental gamma ray attenuation properties such as linear and mass attenuation coefficients, half value layer, mean free path, effective atomic number, effective electron density, effective conductivity, exposure, and energy absorption buildup factors are calculated in 0.015-15 MeV energy range. As a consequence of WO3-GdF3 substitution, the glass densities are observed in different values. The overall gamma ray attenuation properties are found to be enhanced through WO3 addition. Moreover, the increasing WO3 incorporation into glass configuration decreases the overall elastic moduli of glasses. It can be concluded that increasing WO3 may be a useful tool for enhancing the gamma ray attenuation qualities and decreasing the elastic moduli of TeO2-WO3-GdF3 in situations where a material with versatile mechanical properties is required. © 2023 the author(s), published by De Gruyter.Öğe The role of Ag2O incorporation in nuclear radiation shielding behaviors of the Li2O-Pb3O4-SiO2glass system: A multi-step characterization study(De Gruyter Open Ltd, 2023) Almisned, G.; Susoy, G.; Zakaly, H.M.H.; Rabaa, E.; Kilic, G.; Ilik, E.; Sen Baykal D.We report the gamma-ray shielding properties of five different lithium silicate glasses based on the (40 - x) Li2O-10Pb3O4-50SiO2 nominal composition. Transmission factor values and some basic shielding parameters such as linear (?) and mass attenuation coefficients (?/?), half-value layer, tenth value layer, and mean free path (MFP) values of the investigated glass samples are determined in a large photon energy range. Using the G-P fitting method at various MFP values, the exposure buildup factor and energy absorption buildup factor values of the examined glasses are also calculated. Based on the findings, it can be concluded that the S5 glass specimen, which exhibits the greatest Ag2O additive and density among the various glass samples, represents a favorable choice for the purpose of shielding against gamma radiation. © 2023 the author(s), published by De Gruyter.