Yazar "Amro, Malak" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Machine learning techniques for predicting depression and anxiety in pregnant and postpartum women during the COVID-19 pandemic: a cross-sectional regional study(F1000 Research Ltd, 2022) Qasrawi, Radwan; Amro, Malak; VicunaPolo, Stephanny; Abu Al-Halawa, Diala; Agha, Hazem; Abu Seir, Rania; Hoteit, Maha; Hoteit, Reem; Allehdan, Sabika; Behzad, Nouf; Bookari, Khlood; AlKhalaf, Majid; Al-Sabbah, Haleama; Badran, Eman; Tayyem, ReemaBackground: Maternal depression and anxiety are significant public health concerns that play an important role in the health and well-being of mothers and children. The COVID-19 pandemic, the consequential lockdowns and related safety restrictions worldwide negatively affected the mental health of pregnant and postpartum women. Methods: This regional study aimed to develop a machine learning (ML) model for the prediction of maternal depression and anxiety. The study used a dataset collected from five Arab countries during the COVID-19 pandemic between July to December 2020. The population sample included 3569 women (1939 pregnant and 1630 postpartum) from five countries (Jordan, Palestine, Lebanon, Saudi Arabia, and Bahrain). The performance of seven machine learning algorithms was assessed for the prediction of depression and anxiety symptoms. Results: The Gradient Boosting (GB) and Random Forest (RF) models outperformed other studied ML algorithms with accuracy values of 83.3% and 83.2% for depression, respectively, and values of 82.9% and 81.3% for anxiety, respectively. The Mathew's Correlation Coefficient was evaluated for the ML models; the Naïve Bayes (NB) and GB models presented the highest performance measures (0.63 and 0.59) for depression and (0.74 and 0.73) for anxiety, respectively. The features' importance ranking was evaluated, the results showed that stress during pregnancy, family support, financial issues, income, and social support were the most significant values in predicting anxiety and depression. Conclusion: Overall, the study evidenced the power of ML models in predicting maternal depression and anxiety and proved to be an efficient tool for identifying and predicting the associated risk factors that influence maternal mental health. The deployment of machine learning models for screening and early detection of depression and anxiety among pregnant and postpartum women might facilitate the development of health prevention and intervention programs that will enhance maternal and child health in low- and middle-income countries.Öğe Machine learning techniques for tomato plant diseases clustering, prediction and classification(IEEE, 2021) Qasrawi, Radwan; Amro, Malak; Zaghal, Raid; Sawafteh, Mohammad; Vicuna Polo, StephannyThe agriculture sector in Palestine faces several challenges that affect the quality of crop yields, including plant diseases. Plant diseases may be caused by bacteria, viruses, and fungus, among others. Early detection and classification of these diseases allow farmers to reduce the instances and control the effect that the disease may have on their crops. Therefore, this study utilizes machine learning models for the clustering, prediction, and classification of tomato plant diseases in Palestine. The study used 3000 smartphone digital images of five tomato plant diseases (Alternaria Solani; Botrytis Cinerea; Panonychus Citri; Phytophthora Infestans; Tuta Absoluta) collected from three districts across the West Bank (Tulkarem, Jenin, and Tubas). The machine learning models used image embedding and hierarchical clustering techniques in clustering, and the neural network, random Forest, naïve Bayes, SVM, Decision Tree, and Logistic regression for prediction and classification. The models’ accuracy was validated in reference to a tomato plant diseases database created by plant pathogens experts. The clustering model provided 7 diseases clustering with an accuracy rate of 70%, while the neural network and logistic regression models reported performance accuracies of 70.3% and 68.9% respectively. The findings demonstrate that the proposed approach provides acceptable accuracy rates in the clustering, detection, and classification of tomato plant disease. Thus, the deployment of machine learning techniques in the agriculture sector might help Palestinian farmers better manage and control tomato diseases.