Yazar "Ari, Ferda" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Combination of histone deacetylase inhibitor with Cu(II) 5,5- diethylbarbiturate complex induces apoptosis in breast cancer stem cells: a promising novel approach(2021) Erkısa Genel, Merve; Aztopal, Nazlıhan; Ertürk, Elif; Ulukaya, Engin; Yılmaz, Veysel Turan; Ari, FerdaBackground: Cancer stem cells (CSC) are subpopulation within the tumor that acts a part in the initiation, progression, recurrence, resistance to drugs and metastasis of cancer. It is well known that epigenetic changes lead to tumor formation in cancer stem cells and show drug resistance. Epigenetic modulators and /or their combination with different agents have been used in cancer therapy. Objective: In our study we scope out the effects of combination of a histone deacetylases inhibitor, valproic acid (VPA), and Cu(II) complex [Cu(barb-?N)(barb-?2N,O)(phen-?N,N')]·H2O] on cytotoxicity/apoptosis in a stem-cell enriched population (MCF-7s) obtained from parental breast cancer cell line (MCF-7). Methods: Viability of the cells was measured by the ATP assay. Apoptosis was elucidated via the assessment of caspase-cleaved cytokeratin 18 (M30 ELISA) and a group of flow cytometry analysis (caspase 3/7 activity, phosphatidylserine translocation by annexin V-FITC assay, DNA damage and oxidative stress) and 2',7'-dichlorofluorescein diacetate staining. Results: The VPA combined with Cu(II) complex showed anti proliferative activity on MCF-7s cells in a dose- and time-dependently. Treatment with combination of 2.5 mM VPA and 3.12 ?M Cu(II) complex induces oxidative stress in a time-dependent manner, as well as apoptosis that is evidenced by the increase in caspase 3/7 activity, positive annexin-V-FITC, and increase in M30 levels. Conclusion: The results suggest that the combination therapy induces apoptosis following increased oxidative stress, thereby making it a possible promising therapeutic strategy that further analysis is required.Öğe A promising therapeutic combination for metastatic prostate cancer: Chloroquine as autophagy inhibitor and palladium(II) barbiturate complex(Elsevier B.V., 2020) Erkısa Genel, Merve; Aydınlık, Şeyma; Cevatemre, Buse; Aztopal, Nazlıhan; Akar, Remzi Okan; Çelikler, Serap; Yılmaz, Veysel Turan; Ari, Ferda; Ulukaya, EnginAutophagy is a catabolic process for cells that can provide energy sources and allows cancer cells to evade cell death. Therefore, studies on the combination of autophagy inhibitors with drugs are increasing as a new treatment modality in cancer. Previously, we reported the anti-tumor activity of a Palladium (Pd)(II) complex against different types of cancer in vitro and in vivo. Chloroquine (CQ), the worldwide used anti-malarial drug, has recently been focused as a chemosensitizer in cancer treatment. The aim of this study was to investigate the efficacy of a combined treatment of these agents that work through different mechanisms to provide an effective treatment modality for metastatic prostate cancer that is certainly fatal. Metastatic prostate cancer cell lines (PC-3 and LNCaP) were treated with Pd (II) complex, CQ, and their combination. The combination enhanced apoptosis by increasing phosphatidylserine translocation and pro-apoptotic proteins. Apoptosis was confirmed by the use of apoptosis inhibitor. The formation of acidic vesicular organelles (AVOs) was observed by acridine orange staining in fluorescence microscopy. The Pd (II) complex increased AVOs formation in prostate cancer cells and CQ-pretreatment has potentiated this effect. Importantly, treatment with CQ suppressed the pro-survival function of autophagy, which might have contributed to enhanced cytotoxicity. In addition, PI3K/AKT/mTOR-related protein expressions were altered after the combination of treatments. Our results suggest that combination treatment enhances apoptotic cell death possibly via the inhibition of autophagy, and may therefore be regarded as a novel and better approach for the treatment of metastatic prostate cancer. © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM)