Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Baykal, Duygu Şen" seçeneğine göre listele

Listeleniyor 1 - 10 / 10
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A comparative investigation on mechanical, gamma-ray and neutron shielding properties of some iron and boron containing concretes samples for nuclear safety applications
    (Pergamon-elsevier science LTD, 2024) Almisned, Ghada; Susoy, Gülfem; Baykal, Duygu Şen; Tekin, Hüseyin Ozan
    This study explores the gamma-ray and neutron shielding properties of fourteen different concrete samples, each tailored with varying percentages of Boron Carbide, Iron, and Iron Boride. Using the MCNP 6.3 Monte Carlo code, we calculated transmission factors for photon energies of 0.662 MeV, 1.1732 MeV, and 1.3325 MeV, and analyzed the impact of concrete thickness on shielding efficacy. Additionally, the Phy-X/PSD software was used to compute critical parameters such as linear and mass attenuation coefficients, half-value layer, tenth-value layer, mean free path, and fast neutron removal cross-section to gain a comprehensive understanding of each material's shielding capabilities. Our findings indicate that adding iron to the concrete matrix significantly enhances its attenuation properties, with the 20%Fe+80%Concrete sample outperforming all others. This composition demonstrated the lowest transmission factors across all tested energies and thicknesses, indicating superior photon attenuation. Moreover, the 20%Fe+80% Concrete exhibited the highest fast neutron removal cross-section, making it highly effective for environments requiring neutron shielding. In addition to the shielding properties, we analyzed the Elastic (Young's) Modulus of the concrete samples to understand their mechanical properties. Standard Concrete had an Elastic Modulus of 261.24 GPa, while the introduction of boron carbide significantly enhanced the Elastic Modulus, with pure boron carbide concrete exhibiting a value of 518.88 GPa. Concrete samples with varying percentages of boron carbide (5%, 10%, 15%, and 20%) showed a progressive increase in Elastic Modulus, indicating that higher proportions of boron carbide consistently enhance the material's stiffness. Conversely, concrete samples with iron boride and iron showed slight reductions in Elastic Modulus. It can be concluded that the boron carbide enhances stiffness, iron and iron boride provide a balance between stiffness and other properties. In conclusion, the 20%Fe+80%Concrete is a standout material that could greatly improve radiation shielding, offering major benefits.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A critical evaluation on nuclear safety properties of novel cadmium oxide-rich glass containers for transportation and waste management: Benchmarking with a reinforced concrete container
    (Frontiers Media SA, 2022) ALMisned, Ghada; Baykal, Duygu Şen; Kılıç, Gökhan; İlik, Erkan; Zakaly, Hesham M.H.; Ene, Antoaneta; Tekin, Hüseyin Ozan
    We examine the nuclear safety properties of a newly designed cadmium oxide-rich glass container for nuclear material to a bitumen-reinforced concrete container. Individual transmission factors, detector modelling, and energy deposition (MeV/g) in the air are calculated using MCNPX (version 2.7.0) general purpose Monte Carlo code. Two container configurations are designed with the material properties of cadmium dioxide-rich glass and Concrete + Bitument in consideration. First, individual transmission factors for 60Co and 137Cs radioisotopes are calculated. To evaluate potential environmental consequences, energy deposition amounts in the air for 60Co and 137Cs are also determined. The minimum gamma-ray transmission rates for two container types are reported for a cadmium dioxide-rich glass container. In addition, the quantity of energy deposition is varied depending on the container type, with a lower value for cadmium dioxide-rich glass container. The 40% cadmium dioxide-doped glass container provides more effective safety than the Cement + Bitumen container, according to the overall findings. In conclusion, the utilization of cadmium dioxide-doped glass material along with its high transparency and advanced material properties may be a significant and effective option in areas where concrete is required to assure the safety of nuclear materials. Copyright © 2022 ALMisned, Baykal, Kilic, Ilik, Zakaly, Ene and Tekin.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Determination of gamma-ray transmission factors of WO3-TeO2-B2O3 glasses using MCNPX monte carlo code for shielding and protection purposes
    (DE GRUYTER POLAND SP Z O O, 2022) Almisned, Ghada; Susoy, Gülfem; Kılıç, Gökhan; Zakaly, Hesham M. H.; Ene, Antoaneta; Tekin, Hüseyin Ozan; Baykal, Duygu Şen
    The aim of this study is to assess the individual gamma-ray transmission factors (TFs) and some fundamental gamma-ray attenuation properties of several types of glasses based on WO3-TeO2-B2O3 glasses system. MCNPX (version 2.7.0) is used for the calculation of TFs. Other critical parameters are determined using the Phy-X/PSD program. To determine the TFs of studied glasses, several medical radioisotopes are determined along with their characteristic gamma-ray energies. The superior values for the investigated parameters are found in glass sample S6. Furthermore, the exposure build-up factor and energy absorption build-up factor values for glass sample S6 were the lowest. S6 glass sample with the chemical composition 0.03833B + 0.26075O + 0.11591Zn + 0.52783Te + 0.05718W and a density of 3.3579 g/cm(3) is found to have exceptional gamma-ray attenuation qualities, according to our findings. It can be concluded that the prospective attributes of WO3-doped glass systems and associated glass compositions would be beneficial for scientific community in terms of providing a clearer view for some advanced applications of these glass types.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Diagnostic and therapeutic radioisotopes in nuclear medicine: Determination of gamma-ray transmission factors and safety competencies of high-dense and transparent glassy shields
    (DE GRUYTER POLAND SP Z O O, 2022) Erdemir, Rabiye Uslu; Kılıç, Gökhan; Baykal, Duygu Şen; Almisned, Ghada; Issa, Shams A. M.; Zakaly, Hesham M. H.; Ene, Antoaneta; Tekin, Hüseyin Ozan
    We present the findings of an extensive examination on newly designed CdO-rich and transparent glass shields for nuclear medicine facilities in lieu of traditional and unfavorable materials, such as lead and concrete. Gamma-ray transmission factors of newly designed glass shields are determined using a variety of diagnostic, therapeutic, and research radioisotopes, including Ga-67, Co-57, In-111, Tl-201, Tc-99m, Cr-51, I-131, Co-58, Cs-137, Ba-133, and Co-60. A general-purpose Monte Carlo code MCNPX (version 2.7.0) is used to determine the attenuation parameters of different material thicknesses. Next, the findings are compared using a standard concrete shielding material. The results indicate that adding more CdO to the glass composition improves the overall gamma-ray attenuation properties. As a result, among the heavy and transparent glasses developed, the C40 sample containing 40% CdO exhibited the best gamma-ray absorption properties against all radioisotopes. Furthermore, the gamma-ray absorption characteristics of this created high-density glass were shown to be better to those of a standard and heavy concrete sample. It can be concluded that the newly developed CdO-rich and transparent glass sample may be used in medical radiation fields where the radioisotopes examined are used in daily clinical and research applications.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Enhanced radiation shielding via incorporating europium oxide in 316L stainless steel: Synthesis, physical, microstructural, shielding, and mechanical properties
    (Elsevier Editora Ltda, 2025) Tekin, Hüseyin Ozan; Yayla, Nihal; Albayrak, M.Gökhan; Güler, Ömer; Baykal, Duygu Şen; Alkarrani, Hessa; ALMisned, Ghada
    316L stainless steel is widely utilized in various industries due to its excellent corrosion resistance, mechanical strength, and biocompatibility, making it a preferred material for applications in nuclear filed. However, enhancing its radiation shielding and mechanical properties through reinforcement strategies, such as the addition of high-Z materials like Europium(III) oxide, is crucial for extending its functionality in high-radiation environments, where improved performance is essential for safety and durability. In this study, 316L stainless steel composites reinforced with varying amounts of Eu2O3 (1%, 5%, 10%, and 20%) were synthesized and investigated for their structural, mechanical, and radiation shielding properties. X-ray diffraction (XRD) analysis revealed that the face-centered cubic (FCC) structure of the steel matrix was preserved up to 5% Eu2O3 reinforcement, while higher concentrations led to phase formation and crystallographic changes. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis showed uniform element distribution at low reinforcement levels, with particle clustering at 20% Eu2O3. Transmission factors (TFs) were evaluated using PHITS simulations for photon energies of 0.662 MeV, 1.1732 MeV, and 1.3325 MeV. The 20% Eu2O3 composite exhibited the lowest TF and highest attenuation properties, confirmed by mass and linear attenuation coefficients. Elastic modulus values decreased from 224.46 GPa in pure 316L to 189.26 GPa with 20% Eu2O3 reinforcement, reflecting the inverse relationship between mechanical stiffness and radiation shielding performance. Benchmarking against other shielding materials demonstrated superior performance of the Eu2O3-reinforced steel in gamma-ray attenuation. The 20% Eu2O3 composite shows strong potential for applications in nuclear radiation shielding where attenuation efficiency is prioritized over mechanical properties. © 2024 The Authors
  • Yükleniyor...
    Küçük Resim
    Öğe
    Examining the trade-off between structural, mechanical properties and shielding performance of Pr2O3-enhanced 316L stainless steel
    (Elsevier ltd, 2025) Yayla, Nihal; Albayrak, M.Gökhan; Güler, Ömer; Baykal, Duygu Şen; Alkarrani, Hessa; Almisned, Ghada; Zakaly, Hesham M.H.; Tekin, Hüseyin Ozan
    This study explores the structural, mechanical, and radiation shielding properties of 316L stainless steel composites reinforced with varying weight percentages of Pr2O3. The aim is to enhance radiation attenuation capabilities while maintaining structural integrity for nuclear applications. The composites were fabricated using the mechanical alloying method, followed by detailed characterization through X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Key radiation shielding parameters, including mass attenuation coefficient, linear attenuation coefficient, half-value layer, and effective atomic number, and transmission factor values were analysed using theoretical and computational models. Additionally, elastic modulus calculations were performed to assess mechanical properties. The results indicate that incorporating Pr2O3 significantly enhances shielding performance. The 316L-SS%20Pr2O3 composite exhibited the highest mass and linear attenuation coefficients values, with a notable reduction in half value layer values compared to the unreinforced 316L stainless steel. At lower photon energies, effective atomic number improved by 39.3 % for the 316L-SS%20Pr2O3 sample, while neutron shielding efficiency also increased. However, the elastic modulus decreased with higher Pr2O3 content, reflecting a trade-off between mechanical stiffness and radiation shielding efficiency. The findings demonstrate that 316L-SS%20Pr2O3 is a promising material for applications requiring superior radiation shielding, particularly in environments where mechanical load is secondary.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Phase Stability, Structural Properties, Electronegativity, Mechanical Properties, and Neutron and Gamma-Ray Attenuation Properties of Cantor High Entropy Alloys for Advanced Nuclear Applications
    (Springer, 2024) Tekin, Hüseyin Ozan; Güler, Ömer; Özkul, İskender; AlMisned, Ghada; Baykal, Duygu Şen; Alkarrani, Hessa; Kılıç, Gökhan
    High Entropy Alloys (HEAs) hold considerable potential for sophisticated nuclear applications, offering a vast spectrum of compositional tuning to enhance mechanical properties at high temperatures, as well as to increase resistance to radiation and corrosion. This study explores the suitability of Cantor HEAs, specifically the CoCrFeMnNi matrix enriched with elements such as Zr, Nb, Mo, Hf, Ta, and W, for nuclear applications. These elements were selected for their high atomic numbers and neutron capture cross-sections, vital for enhancing gamma-ray and neutron shielding properties. Utilizing advanced computational and theoretical methods, the elastic modulus of these alloys was theoretically estimated while their radiation attenuation capabilities were evaluated through different Monte Carlo simulation codes. CoCrFeMnNiW demonstrated the highest elastic modulus (340.9 GPa), indicating significant mechanical robustness. The addition of W resulted in superior gamma-ray attenuation, with the lowest gamma-ray transmission factors and highest neutron shielding effectiveness among the studied alloys. The calculated mass attenuation coefficients and effective removal cross-sections values demonstrate the potential of these HEAs to provide effective radiation shielding. Our results showed a clear correlation between the elastic modulus and radiation attenuation properties, suggesting that mechanical stiffness does not compromise shielding capabilities. The comprehensive analysis of thermodynamic and structural parameters, including entropy of mixing, mixing enthalpy, and Valence Electron Concentration (VEC), provided essential insights into phase stability and microstructural characteristics. It can be concluded that CoCrFeMnNiW and its related Cantor HEAs as promising materials for advancing nuclear technology, offering a new horizon for safer and more efficient nuclear systems. © ASM International 2024.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Physical features of high-density barium–tungstate–phosphate (BTP) glasses: elastic moduli, and gamma transmission factors
    (MDPI, 2022) Zakaly, Hesham M. H.; Tekin, Hüseyin Ozan; Rammah, Yasser S.; Issa, Shams A. M.; Alomari, Ali Hamed; Ali, Fatema T.; Baykal, Duygu Şen; Elshami, Wiam; Abulyazied D.E.; ALMisned, Ghada; Mostafa A.M.A.; Ene, Antoaneta
    Funding details Abstract We present elastic moduli, gamma radiation attenuation characteristics, and transmission factor of barium–tungstate–phosphate (BTP) glasses with the chemical formula (60-y)BaO-yWO3-40P2O5, where y = 10 (S1)–40 (S4) in steps of 10 mole%. Different types of mathematical and simulation approaches, such as the Makishima-Mackenzie model, the Monte Carlo method, and the online Phy-X/PSD software, are utilized in terms of determining these parameters. The total packing density (Vt) is enriched from 0.607 to 0.627, while the total energy dissociation (Gt) is enriched by increasing the WO3 content (from 52.2 (kJ/cm3). In the investigated glasses, increasing tungstate trioxide (WO3) contribution enhanced Young’s, shear, bulk, and longitudinal moduli. Moreover, Poisson’s ratio is improved by increasing the WO3 content in the BTP glasses. The 20BaO-40WO3-40P2O5 sample possessed the highest values of both linear (µ) and mass attenuation (µm) coefficients, i.e., (µ, µm)S4 > (µ, µm)S3 > (µ, µm)S2 > (µ, µm)S1. Moreover, the 20BaO-40WO3-40P2O5 sample had the lowest values of half (HVL) and tenth (TVL) layers, i.e., (half, tenth)S4 < (half, tenth)S3 < (half, tenth)S2 < (half, tenth)S1. The effective atomic number (Zeff) of the studied glasses has the same behavior as µ and µm. Finally, the 20BaO-40WO3-40P2O5 is reported with the minimum values of transmission factor (TF) for all the BTP investigated at a thickness of 3 cm. In conclusion, the sample with composition 20BaO-40WO3-40P2O5 which has the maximum WO3 reinforcement may be a beneficial glass sample, along with its advanced mechanical and gamma ray shielding properties. © 2022 by the authors.
  • Yükleniyor...
    Küçük Resim
    Öğe
    The significant role of WO3 on high-dense BaO–P2O3 glasses: transmission factors and a comparative investigation using commercial and other types of shields
    (The significant role of WO3 on high-dense BaO–P2O3 glasses: transmission factors and a comparative investigation using commercial and other types of shields, 2022) Tekin, Hüseyin Ozan; Almisned, Ghada; Rammah, Y.S.; Susoy, Gülfem; Ali, Fatema T.; Baykal, Duygu Şen; Elshami, W.; Zakaly, Hesham M. H.; Issa, Shams A. M.
    The direct effects of tungsten trioxide (WO3) on gamma radiation attenuation properties of tungsten/barium/phosphate glasses with chemical form xWO3–(50-x/2)BaO–(50-x/2)P2O3, x = 0 (S1)–60 (S7) in steps of 10 mol% has been investigated. To this end, Phy-X/PSD software and Monte Carlo code were applied. The increased amount of WO3 in the glass composition, on the other hand, contributed positively to the increase in density and radiation sensing properties. At the lowest and highest WO3 contributions, a nearly twofold increase in HVL value was seen for the S1 and S7 glass samples, respectively, with S7 having the lowest HVL values. The HVL has obeyed the trend as: (HVL)S1 > (HVL)S2 > (HVL)S3 > (HVL)S4 > (HVL)S5 > (HVL)S6 > (HVL)S7. The variation of the tenth value layer (TVL) for all studied glasses has the same trend of HVL. In terms of mean free path (MFP), there was negative effect of WO3 concentration on the trend of MFP. Consequently, S7 glass sample has the lowest values of MFP, while the S1 glass sample has the highest values. Therefore, (MFP)S1 > (MFP)S2 > (MFP)S3 > (MFP)S4 > (MFP)S5 > (MFP)S6 > (MFP)S7. A comparison of the HVL of S7 glass sample with some commercial radiation shielding materials such as different types of concrete and RS-253-G18 glasses has been performed and concluded that the S7 glass sample is superior as radiation shielding material than several commercial materials. It can be concluded that WO3 reinforcement serves a multipurpose of increasing the density and hence the gamma-ray-shielding characteristics of comparable glass compositions. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Transmission factor (TF) behavior of Bi2O3–TeO2–Na2O–TiO2–ZnO glass system: A Monte Carlo simulation study
    (MDPI, 2022) Tekin, Hüseyin Ozan; Almisned, Ghada; Susoy, Gülfem; Ali, Fatema T.; Baykal, Duygu Şen; Ene, Antoaneta; Issa, Shams A.M.; Rammah, Yasser S.; Zakaly, Hesham M.H.
    The main objective of the present work was to assess the gamma radiation shielding competencies and gamma radiation transmission factors (TFs) for some tellurite glasses in the form of Bi2O3–TeO2–Na2O–TiO2–ZnO. MCNPX general-purpose Monte Carlo code (version 2.6.0) was utilized for the determination of TF values at various well-known radioisotope energies for different glass thicknesses from 0.5 cm to 3 cm. Moreover, some important gamma ray shielding properties were also determined in the 0.015–15 MeV energy range. The results show that glass densities were improved from 5.401 g/cm3 to 6.138 g·cm3 as a function of Bi2O3 increment in the glass composition. A S5 glass sample with the maximum Bi2O3 additive was reported with superior gamma ray shielding properties among the studied glasses. It can be concluded that Bi2O3 can be used as a functional tool in terms of improving glass density and, accordingly, gamma ray shielding attenuation properties of tellurite glasses, where the role Bi2O3 is also critical for other material properties, such as structural, optical, and mechanical. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim