Yazar "Caglar, A." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe COMPACT PROTON ACCELERATOR IN UHF BAND AT KAHVELab(JACoW Publishing, 2022) Esen, S.; Adiguzel, A.; Kocer, O.; Caglar, A.; Celebi, E.; Oz, S.; Ozcan V.E.Proton Test Beam at KAHVELab (Kandilli Detector, Accelerator and Instrumentation Laboratory) project aims to design and produce a radio frequency quadrupole (RFQ) operating at 800 MHz in Istanbul, Turkey using the local resources. The beamline consists of a proton source, a low energy beam transport (LEBT) line including the beam diagnostic section and the RFQ cavity itself. This RFQ is 4-vane, 1-meter-long cavity to accelerate the 20 keV beam extracted from plasma ion source to 2 MeV. Its engineering prototype is already produced and subjected to mechanical, low power RF and vacuum tests. In this study, the results of the first test production, especially the bead-pull test setup will be discussed. © 2022 Proceedings - Linear Accelerator Conference, LINAC. All rights reserved.Öğe CONTROL SYSTEMS OF DC ACCELERATORS AT KAHVELab(JACoW Publishing, 2022) Ilhan, T.B.; Caglar, A.; Halis, D.; Adiguzel, A.; Oz, S.; Cetinkaya, H.; Elibollar E.KAHVE Laboratory has two functional particle sources: thermal electrons and ionized hydrogen. Each of these are followed by DC acceleration sections, for obtaining an electron beam to accelerate electrons MeV energy level and for providing protons to the radio frequency quadrupole accelerator which are being built. So far both systems have keV energy levels. Both systems employ LabVIEW based GUIs to interact with the user and to control and monitor the DC power supplies. The vacuum gauges, turbomolecular pumps, stepper motors and high voltage power supplies are all controlled with PLCs. The equipment under high voltage, are monitored and controlled via Arduino based wifi and bluetooth wireless communication protocols. The proton beamline has additional devices for beam diagnostics which are being commissioned like pepper pot plate, scintillator screen and faraday cup. Both systems are being standardize before MeV energy level for generalize to national labs which are working on detectors and accelerators. We believe such a setup could be a low budget control and readout example for modern small experiments and educational projects. © 2022 Proceedings of the International Beam Instrumentation Conference, IBIC. All rights reserved.Öğe RF MEASUREMENTS AND TUNING OF THE TEST MODULE OF 800 MHz RADIO-FREQUENCY QUADRUPOLE(JACoW Publishing, 2022) Kilicgedik, A.; Adiguzel, A.; Esen, S.; Baran, B.; Caglar, A.; Celebi, E.; Ozcan V.E.The 800 MHz RFQ (radio-frequency quadrupole), developed and built at KAHVElab (Kandilli Detector, Accelerator and Instrumentation Laboratory) at Bogazici University in Istanbul, Turkey, has been designed to provide protons that have an energy of 2 MeV within only 1 m length. The RFQ consists of two modules and the test module of RFQ was constructed. The algorithm developed by CERN, based on the measurements generated by the tuner settings estimated through the response matrix [1, 2, 3], has been optimized for a single module and 16 tuners. The desired field consistent with the simulation was obtained by bead-pull measurements. In this study, we present low-power rf measurements and field tuning of the test module. © 2022 Proceedings - Linear Accelerator Conference, LINAC. All rights reserved.