Yazar "Gül, Ali Oktay" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Boron nitride nanosheet-reinforced WNiCoFeCr high-entropy alloys: the role of B4C on the structural, physical, mechanical, and radiological shielding properties(Springer Science and Business Media Deutschland GmbH, 2022) Kavaz, Esra; Gül, Ali Oktay; Başgöz, Öyküm; Güler, Ömer; Almisned, Ghada; Bahçeci, Ersin; Güler, Seval Hale; Tekin, Hüseyin OzanThe synthesis and extensive characterization of newly developed boron nitride nanosheet (BNNSs)-reinforced WNiCoFeCr high-entropy alloys (HEAs) are presented. The influence of B4C on the structural, physical, mechanical, and nuclear shielding characteristics of synthesized HEAs has been widely examined in terms of its monotonic effects on the behavior changes. The internal morphology and structural characteristics of the fabricated composites are first investigated using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Wear testing is used to determine the coefficient of friction as a function of sliding distance. Experimental gamma ray and neutron setups are created to determine their shielding characteristics against nuclear radiation. Finally, the shielding characteristics of nuclear radiation for gamma ray and fast neutrons are compared extensively to those of many existing and new-generation shielding materials. Among the examined samples, the S2 sample with B4C and BNNSs reinforcement had the greatest mechanical characteristics. Our findings imply that increasing B4C directly contributes to the shielding qualities of nuclear radiation. The B4C created in the structure of BNNSs contributes to the overall properties of HEAs, which are crucial for nuclear applications, since HEAs are being examined as a component of future nuclear reactors. Additionally, B4C is a very versatile material that may be used in circumstances where mechanical and nuclear shielding properties need to be enhanced for a variety of radiation energies. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.Öğe Boron nitride nanosheet-reinforced WNiCoFeCr high-entropy alloys: the role of B4C on the structural, physical, mechanical, and radiological shielding properties (vol 128, 694, 2022)(SPRINGER HEIDELBERG, 2022) Kavaz, Esra; Gül, Ali Oktay; Başgöz, Öyküm; Güler, Ömer; Almisned, Ghada; Bahçeci, Ersin; Güler, Seval Hale; Tekin, Hüseyin OzanNo Abstract Available.Öğe Newly synthesized NiCoFeCrW High-Entropy Alloys (HEAs): Multiple impacts of B4C additive on structural, mechanical, and nuclear shielding properties(Elsevier, 2022) Gül, Ali Oktay; Kavaz, Esra; Başgöz, Öyküm; Güler, Ömer; Almisned, Ghada; Bahçeci, Ersin; Albayrak, M. Gökhan; Tekin, Hüseyin OzanHigh-Entropy Alloys (HEAs) are regarded as potential structural materials for fusion and next-generation fission reactors, which will be required to fulfil growing nuclear energy demands. In this study, a HEA-composite was synthesized by adding B4C to an HEA containing Ni. The microstructure of the obtained HEA-composite was examined and the changes in its mechanical properties were revealed. Additionally, the nuclear radiation shielding properties of the Ni-containing HEA, and the HEA-composite are investigated using experimental and theoretical methods. Our initial findings showed that with the addition of 2.5% B4C to the alloy, the hardness increased more than two times. The addition of B4C to the HEA matrix resulted in a more than 90% and a nearly twofold increase in compressive strength. The shielding qualities of gamma-ray and neutron radiation were investigated using experimental and theoretical approaches. Our findings demonstrated that increasing the B4C reinforcement considerably enhanced the composite material's neutron attenuation capabilities. On the other hand, no significant change in the gamma-ray shielding characteristics of HEA and HEA-composite samples was observed. The gamma-ray shielding characteristics of HEA and HEA-composite samples were compared to those of other alloy shields and commercial products. Our findings indicate that both HEA and HEA-composite samples exhibit superior gamma-ray shielding characteristics when compared to the control samples. It can be concluded that increasing B4C reinforcement may be a multifunctional tool in terms of improving the mechanical properties as well as neutron attenuation properties for advanced applications in nuclear radiation facilities and next-generation fission reactors. Additionally, due to their promising material features and higher gamma-ray shielding capabilities compared to other kinds of alloys and commercial shields, HEAs may be beneficial materials. © 2022 Elsevier Ltd