Yazar "Halim, Hasseri" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer(IWA Publishing, 2024) Halim, Rohaya Abdul; Halim, Hasseri; Hussain, Rosnani Hanim Mohd; Aazmi, Shafiq; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Anuar, Tengku ShahrulFree-living amoebae of the genus Acanthamoeba are causative agents of keratitis and amoebic encephalitis. They are widely found in various ecological environments. Therefore, the present study brings results that can help to better understand the genotypes of the environmental isolates and their pathogenicity. This study procured 26 Acanthamoeba isolates from three recreational lakes in 2022. Polymerase chain reaction amplification was performed on positive Acanthamoeba samples. The thermotolerance, osmotolerance, and cytopathogenicity in human keratinocyte (HaCaT) cells of the samples were also evaluated. The phylogenetic analysis demonstrated that 12 isolates were of genotype T4, two (T9), six (T17), four (T8), and one each from T5 and T11. The thermo- and osmotolerance assays indicated that eight Acanthamoeba samples were potentially pathogenic. Two T4 and one T9 genotype also recorded 33-, 42-, and 133-kDa serine-type proteases, respectively. The HaCaT cell monolayer revealed that three T4 and one T9 samples achieved cytopathic effects within the 50–100% range, hence significantly cytotoxic. The lactate dehydrogenase secretion results demonstrated that three (T4) and one (T9) sample exhibited exceptional toxicity (over 40%) compared to the other samples. The responses of Acanthamoeba members with similar genotypes to pathogenicity indicator assays varied considerably, rendering correlation of pathogenicity with specific genotypes challenging. © 2024 The Authors.Öğe In vitro cytopathogenic activities of acanthamoeba t3 and t4 genotypes on hela cell monolayer(MDPI, 2022) Hussain, Rosnani Hanim Mohd; Ghani, Mohamed Kamel Abdul; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Aazmi, Shafiq; Halim, Hasseri; Anuar, Tengku ShahrulAmoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45-230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9-59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research.Öğe In vitro cytopathogenic activities of acanthamoeba T3 and T4 genotypes on heLa cell monolayer(MDPI, 2022) Mohd Hussain, Rosnani Hanim; Abdul Ghani, Mohamed Kamel; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Aazmi, Shafiq; Halim, Hasseri; Anuar, Tengku ShahrulAmoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45–230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9–59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research. © 2022 by the authors.