Yazar "Hekmatshoar, Yalda" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Characterization of imatinib-resistant K562 cell line displaying resistance mechanisms(C M B Assoc, 2018) Hekmatshoar, Yalda; Özkan, Tülin; Güneş, Buket Altınok; Bozkurt, Süreyya; Karadağ, Aynur; Karabay, Arzu Zeynep; Sunguroğlu, AsumanChronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the t(9; 22) and the related oncogene, BCR-ABL. Tyrosine kinase activity of fusion protein BCR-ABL is the main cause of CML. Even if imatinib is used as a tyrosine kinase inhibitor (TKI) for CML therapy. drug resistance may occur in patients and the clinical failure of imatinib treatment in resistant patients had resulted with the use of another alternative TKIs. BCR-ABL dependent and independent molecular mechanisms have crucial roles in drug resistance. To reveal the underlying molecular mechanisms which play significant roles in imatinib resistance in CML, we established K562 imatinib-resistant cell line (K562r5) which was continuously exposed to (5 mu M) imatinib to investigate molecular mechanisms which play significant roles in drug resistance. First of all, we analyzed T315I. M351T, F315L and F359C/L/V mutations with DNA sequencing as a BCR-ABL dependent mechanism in our cell lines. Moreover, we investigated BCR-ABL independent mechanisms such as apoptosis. autophagy, drug transport and DNA repair which affect drug resistance in these cell lines. In vitro cell viability was determined by MTT assay. DNA sequencing analysis was performed to detect BCR-ABL mutations. The apoptotic effect of imatinib on CML cell lines was tested by flow cytometric Annexin V-PE staining and caspase activation assays. Apoptotic, autophagic, drug transporter and DNA repair genes expression levels were determined by RT-PCR. The conventional cytogenetic analysis was performed on K562s and K562r cells. Our results indicate that inhibition of apoptosis, induction of autophagy, overexpression of efflux gene MDR1 and down-regulation of influx gene OCT1 play crucial roles in the progression of imatinib resistance.Öğe Downregulation of stearoyl-CoA desaturase 1 (SCD-1) promotes resistance to imatinib in chronic myeloid leukemia(Mattioli 1885, 2022) Günes, Buket Altınok; Hekmatshoar, Yalda; Özkan, Tülin; Bozkurt, Süreyya; Aydos, Oya Sena Erdoğan; Büyükaşık, Yahya; Aladağ, Elifcan; Asuman SunguroğluChronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease resulting in the fusion of BCR and ABL genes and characterized by the presence of the reciprocal translocation t(9;22)(q34;q11). BCR-ABL, a product of the BCR-ABL fusion gene, is a structurally active tyrosine kinase and plays an important role in CML disease pathogenesis. Imatinib mesylate (IMA) is a strong and selective BCR-ABL tyrosine kinase inhibitor. Although IMA therapy is an effective treatment, patients may develop resistance to IMA therapy over time. This study investigated the possible genetic resistance mechanisms in patients developing resistance to IMA. We did DNA sequencing in order to detect BCR-ABL mutations, which are responsible for IMA resistance. Moreover, we analyzed the mRNA expression levels of genes responsible for apoptosis, such as BCL-2, P53, and other genes (SCD-1, PTEN). In a group of CML patients resistant to IMA, when compared with IMA-sensitive CML patients, a decrease in SCD-1 gene expression levels and an increase in BCL-2 gene expression levels was observed. In this case, the SCD-1 gene was thought to act as a tumor suppressor. The present study aimed to investigate the mechanisms involved in IMA resistance in CML patients and determine new targets that can be beneficial in choosing the effective treatment. Finally, the study suggests that the SCD-1 and BCL-2 genes may be mechanisms responsible for resistance.Öğe Identification of common genes and pathways underlying imatinib and nilotinib treatment in CML: a Bioinformatics Study(Taylor & Francis Inc, 2023) Hekmatshoar, Yalda; Rahbar Saadat, Yalda; Ozkan, Tulin; Bozkurt, Sureyya; Karadag Gurel, AynurImatinib (IMA) and nilotinib are the first and second generations of BCR-ABL tyrosine kinase inhibitors, which widely applied in chronic myeloid leukemia (CML) treatment. Here we aimed to provide new targets for CML treatment by transcriptome analysis. Microarray data GSE19567 was downloaded and analyzed from Gene Expression Omnibus (GEO) to identify common genes, which are downregulated or upregulated in K562-imatinib and K562-nilotinib treated cells. The differentially expressed genes (DEGs) were assessed, and STRING and Cytoscape were used to create the protein-protein interaction (PPI) network. In imatinib and nilotinib treated groups' comparison, there were common 626 upregulated and 268 downregulated genes, which were differentially expressed. The GO analysis represented the enrichment of DEGs in iron ion binding, protein tyrosine kinase activity, transcription factor activity, ATP binding, sequence-specific DNA binding, cytokine activity, the mitochondrion, sequence-specific DNA binding, plasma membrane and cell-cell adherens junction. KEGG pathway analysis revealed that downregulated DEGs were associated with pathways including microRNAs in cancer and PI3K-Akt signaling pathway. Furthermore, upregulated DEGs were involved in hematopoietic cell lineage, lysosome and chemical carcinogenesis. Among the upregulated genes, MYH9, MYH14, MYL10, MYL7, MYL5, RXRA, CYP1A1, FECH, AKR1C3, ALAD, CAT, CITED2, CPT1A, CYP3A5, CYP3A7, FABP1, HBD, HMBS and PPOX genes were found as hub genes. Moreover, 20 downregulated genes, YARS, AARS, SARS, GARS, CARS, IARS, RRP79, CEBPB, RRP12, UTP14A, PNO1, CCND1, DDX10, MYC, WDR43, CEBPG, DDIT3, VEGFA, PIM1 and TRIB3 were identified as hub genes. These genes have the potential to become target genes for diagnosis and therapy of CML patients.Öğe Phenotypic and functional characterization of subpopulation of Imatinib resistant chronic myeloid leukemia cell line(Elsevier Urban & Partner Sp Z O O, 2023) Hekmatshoar, Yalda; Gurel, Aynur Karadag; Ozkan, Tulin; Saadat, Yalda Rahbar; Koc, Asli; Karabay, Arzu Zeynep; Bozkurt, SureyyaPurpose: Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the presence of BCR-ABL protein. Imatinib (IMA) is considered as the first line therapy in management of CML which particularly targets the BCR-ABL tyrosine kinase protein. However, emergence of resistance to IMA hinders its clinical efficiency. Hence, identifying novel targets for therapeutic approaches in CML treatment is of great importance. Here, we characterize a new subpopulation of highly adherent IMA-resistant CML cells that express stemness and adhesion markers compared to naive counterparts.Materials and methods: We performed several experimental assays including FISH, flow cytometry, and gene expression assays. Additionally, bioinformatics analysis was performed by normalized web-available microarray data (GSE120932) to revalidate and introduce probable biomarkers. Protein-protein interactions (PPI) network was analyzed by the STRING database employing Cytoscape v3.8.2.Results: Our findings demonstrated that constant exposure to 5 & mu;M IMA led to development of the adherent phenotype (K562R-adh). FISH and BCR-ABL expression analysis indicated that K562R-adh cells were derived from the original cells (K562R). In order to determine the role of various genes involved in epi-thelial-mesenchymal transition (EMT) and stem cell characterization, up/down-regulation of various genes including cancer stem cell (CSC), adhesion and cell surface markers and integrins were observed which was similar to the findings of the GSE120932 dataset.Conclusion: Treating CML patients with tyrosine kinase inhibitors (TKIs) as well as targeting adhesion molecules deemed to be effective approaches in prevention of IMA resistance emergence which in turn may provide promising effects in the clinical management of CML patients.