Yazar "Hu, Jie" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Condition Recognition Strategy Based on Fuzzy Clustering With Information Granulation for Blast Furnace(Ieee-Inst Electrical Electronics Engineers Inc, 2023) Huang, Yuanfeng; Du, Sheng; Hu, Jie; Pedrycz, Witold; Wu, MinThe temperature of the cooling stave (TCS) is an important state parameter to indicate the states of the slag crust during the blast furnace ironmaking process. The state of the slag crust affects the quality and production of pig iron, and the gas flow distribution in the blast furnace. Thus, it is necessary to recognize the states of the slag crust. This article proposes a condition recognition strategy based on fuzzy clustering endowed with a novel distance with information granulation for recognizing the states of the slag crust. First, the raw TCS time-series data are split into segments according to the appropriate segmentation length, and the segments are represented in a granular form by the information granulation method. Then, information granules are clustered using fuzzy clustering endowed with a novel distance. After completing the data representation, each information granule is compounded of a lower bound and an upper bound that indicate the dynamic characteristics of the corresponding segments. In the fuzzy clustering, information granulation distance, a new distance, is established to measure the similarity between two information granules. Finally, the data experiments using the datasets from the UCR time-series database and actual industrial data from the blast furnace demonstrate the effectiveness and superiority of the proposed condition recognition strategy.Öğe Dynamic Modeling Framework Based on Automatic Identification of Operating Conditions for Sintering Carbon Consumption Prediction(Ieee-Inst Electrical Electronics Engineers Inc, 2024) Hu, Jie; Wu, Min; Cao, Weihua; Pedrycz, WitoldIn iron and steel industry, the sintering process requires huge carbon consumption. Achieving accurate and dynamic prediction of carbon consumption in this process is of evident significance to protect the environment and raise the economic efficiency of iron and steel industry. This article develops an original dynamic modeling framework, including automatic identification of operating conditions, modeling in different conditions, and dynamic prediction model of sintering carbon consumption. First, an automatic kernel-based fuzzy C-means algorithm is presented for the automatic identification of operating conditions. Dynamic relationships between the inputs and output of the model are analyzed by copula entropy, and then, the relevant production data in each operating condition are determined by a just-in-time learning method. Next, broad learning models are established under different operating conditions. Furthermore, a dynamic prediction model of sintering carbon consumption is designed, and the prediction error is adopted to quantify the performance of the model and as one criterion to determine the update of production database. Finally, results of experiments using actual production data demonstrate the advantage and validity of the developed model compared with some advanced modeling methods. The developed model considers complex characteristics of the sintering process and presents better dynamic performance and information mining performance.Öğe Relevance vector machine with hybrid kernel-based soft sensor via data augmentation for incomplete output data in sintering process(Pergamon-Elsevier Science Ltd, 2024) Hu, Jie; Li, Hongxiang; Li, Huihang; Wu, Min; Cao, Weihua; Pedrycz, WitoldA ratio of CO and CO2 (CO/CO2) is a key indicator of sintering carbon consumption, which is difficult to be determined in real-time. Therefore, the establishment of its soft sensing model is of great practical significance. This paper proposes a novel CO/CO2 soft sensing model with incomplete output data based on relevance vector machine with hybrid kernel via data augmentation. First, a least absolute shrinkage and selection operator is employed for determining key input variables of the model, and an automatic fuzzy clustering framework is used to automatically identify multiple operating modes. Then, a relevance vector machine with hybrid kernel method is presented to model each operating mode separately. Meanwhile, considering the problem of incomplete input and output data, data augmentation is applied in modeling to enhance the model performance. Finally, the soft sensing model of CO/CO2 is formed. Experimental results and analyses using actual production data coming from the sintering production process demonstrate that the prediction performance and accuracy of the proposed model outperform some existing algorithms.