Yazar "Hu, Xianghui" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Knowledge-Induced Multiple Kernel Fuzzy Clustering(Ieee Computer Soc, 2023) Tang, Yiming; Pan, Zhifu; Hu, Xianghui; Pedrycz, Witold; Chen, RenhaoThe introduction of domain knowledge opens new horizons to fuzzy clustering. Then knowledge-driven and data-driven fuzzy clustering methods come into being. To address the challenges of inadequate extraction mechanism and imperfect fusion mode in such class of methods, we propose the Knowledge-induced Multiple Kernel Fuzzy Clustering (KMKFC) algorithm. First, to extract knowledge points better, the Relative Density-based Knowledge Extraction (RDKE) method is proposed to extract high-density knowledge points close to cluster centers of real data structure, and provide initialized cluster centers. Moreover, the multiple kernel mechanism is introduced to improve the adaptability of clustering algorithm and map data to high-dimensional space, so as to better discover the differences between the data and obtain superior clustering results. Second, knowledge points generated by RDKE are integrated into KMKFC through a knowledge-influence matrix to guide the iterative process of KMKFC. Third, we also provide a strategy of automatically obtaining knowledge points, and thus propose the RDKE with Automatic knowledge acquisition (RDKE-A) method and the corresponding KMKFC-A algorithm. Then we prove the convergence of KMKFC and KMKFC-A. Finally, experimental studies demonstrate that the KMKFC and KMKFC-A algorithms perform better than thirteen comparison algorithms with regard to four evaluation indexes and the convergence speed.Öğe Modeling and Clustering of Parabolic Granular Data(Institute of Electrical and Electronics Engineers Inc., 2024) Tang, Yiming; Gao, Jianwei; Pedrycz, Witold; Hu, Xianghui; Xi, Lei; Ren, Fuji; Hu, MinAt present, there exist some problems in granular clustering methods, such as lack of nonlinear membership description and global optimization of granular data boundaries. To address these issues, in this study, revolving around the parabolic granular data, we propose an overall architecture for parabolic granular modeling and clustering. To begin with, novel coverage and specificity functions are established, and then a parabolic granular data structure is proposed. The fuzzy c-means (FCM) algorithm is used to obtain the numeric prototypes, and then particle swarm optimization (PSO) is introduced to construct the parabolic granular data from the global perspective under the guidance of principle of justifiable granularity (PJG). Combining the advantages of FCM and PSO, we propose the parabolic granular modeling and optimization (PGMO) method. Moreover, we put forward attribute weights and sample weights as well as a distance measure induced by the Gaussian kernel similarity, and then come up with the algorithm of weighted kernel fuzzy clustering for parabolic granularity (WKFC-PG). In addition, the assessment mechanism of parabolic granular clustering is discussed. In summary, we set up an overall architecture including parabolic granular modeling, clustering, and assessment. Finally, comparative experiments on artificial, UCI, and high-dimensional datasets validate that our overall architecture delivers a good improvement over previous strategies. The parameter analysis and time complexity are also given for WKFC-PG. In contrast with related granular clustering algorithms, it is observed that WKFC-PG performs better than other granular clustering algorithms and has superior stability in handling outliers, especially on high-dimensional datasets. © 2020 IEEE.