Yazar "Hussain, Nawab" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Fully bipolar fuzzy linear systems: bounded and symmetric solutions in dual form(Springer nature, 2025) Muhammad, Ghulam; Allahviranloo, Tofigh; Hussain, Nawab; Mrsic, LeoThe aim of this article is to develop a new and simple technique to determine the approximate fuzzy solution of the fully bipolar fuzzy linear system of equations (BFLSEs) AU = eta, where U and eta are the triangular bipolar fuzzy vectors and A is either the crisp or fuzzy matrix. The solution of the proposed system is extracted in two fold. First, we obtain the crisp solution of the proposed system. To achieve this, we solve the BFLSEs using(-1,1)-cut expansion. Second, we assign unknown symmetric parameters to each row of this crisp system in(-1,1)-cut expansion. Thus, this system will transform into a system of interval equations. The unknown symmetric parameters corresponding to each element of a bipolar fuzzy vector are obtained by solving such an interval system of equations. Additionally, we demonstrate that the bounded and symmetric solutions (B&SSs) of the fully BFLSEs will reside within the tolerable solution set (TSS) and in the controllable solution set (CSS), respectively. To enhance the novelty of the proposed technique, we present several theorems that serve as a formal foundation for our approach. Furthermore, a numerical example is provided to demonstrate the effectiveness and validity of the proposed technique.Öğe Fuzzy Langevin fractional delay differential equations under granular derivative(Elsevier Inc., 2024) Muhammad, Ghulam; Akram, Muhammad; Hussain, Nawab; Allahviranloo, TofighAnalytical studies of the class of the fuzzy Langevin fractional delay differential equations (FLFDDEs) are frequently complex and challenging. It is necessary to construct an effective technique for the solution of FLFDDEs. This article presents an explicit analytical representation of the solution to the class of FLFDDEs with the general fractional orders under granular differentiability. The closed-form solution to the FLFDDEs is extracted for both the homogeneous and non-homogeneous cases using the Laplace transform technique and presented in terms of the delayed Mittag-Leffler type function with double infinite series. Moreover, the existence and uniqueness of the solutions of the FLFDDEs are investigated using the generalized contraction principle. An illustrative example is provided to support the proposed technique. To add to the originality of the presented work, the FLFDDEs with constant delay are solved by applying vibration theory and visualizing their graphs to support the theoretical results. © 2024 Elsevier Inc.