Yazar "Ivanov, V." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A closer look at the efficiency calibration of LaBr3(Ce) and NaI(Tl) scintillation detectors using MCNPX for various types of nuclear investigations(Elsevier Ltd, 2022) Almisned, Ghada; Zakaly, Hesham M.H.; Ali, Fatema T.; Issa, Shams A.M.; Ene, Antoaneta; Kılıç, Gökhan; Ivanov, V.; Tekin, Hüseyin OzanThe nuclear spectroscopy method has long been used for advanced studies on nuclear physics. In order to decrease costs and increase the efficiency of nuclear radiation investigations, quick and efficient solutions are required. The purpose of this research was to calculate the whole energy peak efficiency values for a range of gamma-ray energies, from 30.973 keV to 1408 keV, at various source-detector distances using the MCNPX Monte Carlo code, which is extensively used in nuclear medicine, industry, and scientific research. As a result, the modeled detectors' full-energy peak efficiencies were calculated and compared to both experimental data and Monte Carlo simulations. Experiment results and prior studies using Monte Carlo simulations were found to be very consistent with these results. The counting efficiency against source-detector distance is then calculated using the modeled detectors. The data we have show that LaBr3(Ce) has outstanding detection properties. This study's findings might be used to improve the design of detectors for use in wide range of high-tech gamma spectroscopy and nuclear research applications.Öğe Notable changes in geochemical and mineralogical characteristics of different phases of episyenitization: insights on the radioactive and shielding of the late phase(Frontiers Media Sa, 2023) Taalab, Sherif A.; Zakaly, Hesham M. H.; Ivanov, V.; Alrowaily, Albandari W.; Awad, Hamdy A.; Abed, Neveen S.; Issa, Shams A. M.Kab Amiri granites are submitted to post-magmatic hydrothermal solutions through fracture and faults, causing several alteration processes. The most common processes are episyenitization, saussuritization, hematitization, sericitization, kaolinization, albitization, chloritization, silicification, and muscovitization. Kab Amiri granites are vuggy, with the vugs partially to completely refilled with new constituents. The least episyenitized granites have elevated amounts of Fe, P, Zr, Ni, U, Th, Ba, Y, Hf, Nb, and As, which are correlated with their mobilization from biotite, k-feldspar, plagioclase and metamict zircon. These elemental changes are related the partial albitization, muscovitization, desilicification and chloritizatiom, which lead to the mobilization of these elements and forming of specific mineral association in the least altered granites such as autonite, tripiolite, columbite, Zircon and galena. On the second stage, granites were subjected to intense alteration processes by mineralizing fluids, causing wholly muscovitization of biotite and feldspar, albitization of plagioclase, carbonitization and apatitization. Many elements were mobilized from these altered minerals, including Ti, Al, Mn, Mg, Ca, Na, K, Mo, Cu, Pb, Zn, Ag, Co, Sr, V, Cr, Sn, Rb, Ta, Li, Sc, W, S, In, and Tl, leading to definite mineralization as kaslite, monazite, xenotime, polycrase and apatite. The mineralizing fluids in the least and highly episyenitized granites are incorporated in some ore minerals like uranophane, fergusonite, bazzite and garnet. Notably, the presence of elements such as U, Th, and other heavy metals in Kab Amiri granites highlights the potential for these rocks in radiation shielding applications. The unique combination of elements and minerals resulting from the alteration processes can be leveraged for developing new materials or enhancing existing materials used in radiation shielding.Öğe Optimal composition for radiation shielding in BTCu-x glass systems as determined by FLUKA(Elsevier, 2023) Uosif, M. A. M.; Issa, Shams A. M.; Ene, Antoaneta; Ivanov, V.; Mostafa, A. M. A.; Atta, Ali; El Agammy, E. F.In various medical, industrial, and nuclear facilities, it is very necessary to have enough shielding against the radiation released by regularly employed isotopes. In this work, we concentrate on nuclear security as well as the radiation shielding against gamma attenuation capabilities of the borate glasses, including Te and Cu. These glasses have the chemical form of (100-x)[30B2O3-70TeO2]-xCuO, where x 1/4 0, 0.005, 0.01, 0.015, 0.02 wt%. The systems were represented by five distinct samples, labelled as BTCu-20, BTCu-15, BTCu-10, BTCu-5, and BTCu-0, where the number refers to the percentage of CuO in the mixture and the remainder is made up of TeO2 and B2O3. Through the use of FLUKA simulations, the basic characteristics associated with gamma shieldings, such as attenuation and transmission factors, were examined for the particular energy range of 238 -1408 MeV emitted from 133Ba, 137Cs, 60Co, 152Eu, and 232Th. The effect of the systematic replacement of CuO by B2O3 and TeO2 on the shielding qualities was explored in depth for gamma radiation. In addition, comparison research was carried out between the currently available borate glasses and the traditional shielding materials. According to the findings of the current investigation, the GHVL was found to be its lowest at 238 keV with values of 0.87, 0.92, 0.98, 1.04, and 1.10 (cm) for BTCu-0, BTCu-5, BTCu-10, BTCu-15, and BTCu-20 glasses, respectively. This points to the possibility that the BTCu-0 sample might be used in radiation shielding applications, which would result in increased nuclear safety.