Yazar "Jayaraman, Sasikala" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Experimental study of droplet combustion and diesel engine characteristics for azolla biodiesel(TAYLOR & FRANCIS INC, 2022) Ganapathy, Saravanan Chidambaram; Seshadri, Thiruvenkatachari; Jayaraman, Sasikala; Raman, Vallinayagam; Malaiperumal, Vikneswaran; Varuvel, Edwin Geo; Joseph Shobana Bai, Femilda JosephinThis study pertains to studying the feasibility of the third-generation biodiesel obtained from one of the algae species known as Azolla microphylla by exploring their fundamental droplet combustion behavior and diesel engine characteristics. Firstly, the droplet evolution and burn rate are investigated for diesel, Azolla100, and Azolla50 (50% biodiesel +50% diesel) based on the experimental study of suspended droplet combustion. The diesel droplet showed steady combustion with linear regression for the decrease in droplet surface with time throughout its lifetime, while the Azolla100 and Azolla50 droplets showed a linear trend initially, and after a certain point, they resulted in a non-linear trend as a result of disruptive burning. The evaporation and burn rate was found to be higher for Azolla100 and Azolla50 than diesel during the steady burning period and thereafter it decreased with increasing Azolla concentration. The time evolution of droplet combustion images indicated that with increasing biodiesel concentration, the combustion duration was decreased due to secondary droplet ejections and microexplosion, and the residue burning duration was increased. The microexplosion increased the rate of combustion, however, droplet ejection resulted in incomplete combustion. Secondly, the engine experiments were performed for Azolla50 at different fuel injection pressures. The results showed that in-cylinder pressure and Brake thermal efficiency (BTE) for Azolla50 at 300 bar injection pressure were lower than diesel due to limitations with the physical properties of biodiesel. In order to improve the engine characteristics of Azolla50, this study increased the fuel injection pressure to 900 bar. As a result, the BTE for Azolla50 at 900 bar injection pressure is improved by 9.2% and 10.2% at low and full load conditions, respectively, compared to Azolla50 at 300 bar injection pressure. Overall, the spray-driven combustion for Azolla50 is limited by the physical properties of the biodiesel, which affects the mixture formation. On the other hand, the microexplosion and droplet ejection observed with the biodiesel during the combustion study would favor the combustion by improving the atomization and mixing process.Öğe Ternary gasoline – pomegranate peel oil (PPO)- tertiary butyl alcohol (TBA) blend as an enabler to improve the spark-ignited engine performance and emissions(Elsevier Ltd, 2022) Nandakumar, C.; Saravanan, C. G.; Vallinayagam, Raman; Vikneswaran, M.; Jayaraman, Sasikala; Joseph Shobana Bai, Femilda Josephin; Varuvel, Edwin GeoThis paper reported a research work that investigated the compatibility of using pomegranate peel oil (PPO) as a substitute for gasoline in a spark-ignition engine. Initially, fuel characterization was performed for the PPO biofuel, and a blend was prepared by blending PPO in gasoline at a ratio of 10:90 by volume. Then, fuel properties were measured for the gasoline, PPO, and its blend. Subsequently, engine experiments were conducted for the blend at different load conditions with constant speed, and the performance, combustion, and emission results of the blend were compared with that of sole gasoline. By analyzing the results, it was found that the brake thermal efficiency of the 10% PPO blended gasoline was reduced by 1.2%, 0.6%, and 1%, at low load, mid load, and full load, respectively, when compared to sole gasoline. Whereas the HC and CO emission of the blend was higher by about 11.7% and 8.3%, respectively, at full load, when compared to that of gasoline. With an intent to improve the performance of the PPO blend, tertiary butyl alcohol (TBA) was blended with the 10% PPO blended gasoline in the volumetric proportion of 5%, 10%, and 15% to form ternary blends. The experimental study revealed that the performance of the PPO blend was enhanced significantly with increasing TBA proportion in the blend. The PPO blend with 15% TBA exhibited the highest BTE of 25.1%, which was 1.6% higher than gasoline at full load. The same blend resulted in the HC and CO emissions that were 9.2% and 9.6% lesser than gasoline, respectively, whereas NO emission was 7.6% higher than gasoline, at full load condition. The combustion analysis revealed that the start of combustion was delayed, with peak pressure and heat release rate being the maximum for ternary blends. From this investigation, it can be concluded that the sole gasoline can be replaced by the ternary blend as fuel for SI engine operation without requiring any major engine modification.