Yazar "Joseph Shobana Bai, Femilda Josephin" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–hydrogen fuelled dual fuel engine(Elsevier, 2022) Joseph Shobana Bai, Femilda Josephin; Shanmugaiah, Kaliraj; Sonthalia, Ankit; Devarajan, Yuvarajan; Varuvel, Edwin GeoIn this research work, performance and emission parameters of wheat germ oil (WGO) -hydrogen dual fuel was investigated experimentally and these parameters were predicted using different machine learning algorithms. Initially, hydrogen injection with 5%, 10% and 15% energy share were used as the dual fuel strategy with WGO. For WGO +15% hydrogen energy share the NO emission is 1089 ppm, which is nearly 33% higher than WGO at full load. As hydrogen has higher flame speed and calorific value and wider flammability limit which increases the combustion temperature. Thus, the reaction between nitrogen and oxygen increases thereby forming more NO. Smoke emission for WGO +15% hydrogen energy share is 66%, which is 15% lower compared to WGO, since the heat released in the pre-mixed phase of combustion is increased to a maximum with higher hydrogen energy share compared to WGO. Different applications including internal combustion engines have used machine learning approaches for predictions and classifications. In the second phase various machine learning techniques namely Decision Tree (DT), Random Forest (RF), Multiple Linear Regression (MLR), and Support Vector Machines (SVM)) were used to predict the emission characteristics of the engine operating in dual fuel mode. The machine learning models were trained and tested using the experimental data. The most effective model was identified using performance metrics like R-Squared (R2) value, Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The result shows that the prediction by MLR model was closest to the experimental results. © 2022 Hydrogen Energy Publications LLCÖğe Application of Taguchi design in optimization of performance and emissions characteristics of n-butanol/diesel/biogas under dual fuel mode(Elsevier, 2023) Goyal, Deepam; Goyal, Tarun; Mahla, Sunil Kumar; Goga, Geetesh; Dhir, Amit; Balasubramanian, Dhinesh; Hoang, Anh Tuan; Joseph Shobana Bai, Femilda Josephin; Varuvel, Edwin GeoCombustion experts are in search of some alternative fuel from last few decades owing to diminishing petroleum products and unexpected variations in habitat, which are result of venomous emissions from the CI engines. The present investigation intended to assess the performance and emission parameters of a diesel engine by fueling it with pilot fuel (blends of diesel and n-butanol) and primary fuel (Biogas). Results revealed that BTE, HC and CO increases whilst NOx and smoke emissions were reduced by using the pilot and primary fuel together in relation with natural diesel. Experimentation was done using Taguchi L9 orthogonal array design. The engine load, flow rate of biogas and butanol in fuel blend percentage were selected as input parameters whereas brake thermal efficiency (BTE) and emission characteristics i.e., HC, CO, NOx and smoke were chosen as response variables. ANOVA was carried out for the responses by utilizing MINITAB software. The higher value of raw data and S/N ratio for BTE was noted with high engine load, low flow rate of biogas and butanol blend percent. For the emission characteristics i.e., HC, CO and smoke, lower raw data and high S/N ratio values were attained in the order of rank engine load > butanol blend percent > biogas flow rate while the similar values for NOx were attained in the rank engine load > biogas flow rate > butanol blend percent. Taguchi design was noted to be an effective tool for the optimization of various response parameters and the optimum levels of input parameters were calculated after analysis. Full engine load for BTE and HC, Biogas flow rate of 15 lpm for BTE, HC and CO, and 20 % of butanol blend for HC, CO and smoke were found to be the optimum conditions for the conducted experimentation. © 2022 Elsevier LtdÖğe Experimental assessment on the performance, emission and combustion characteristics of a safflower oil fueled CI engine with hydrogen gas enrichment(Elsevier Ltd, 2022) Praveena, V.; Joseph Shobana Bai, Femilda Josephin; Balasubramanian, Dhinesh; Devarajan, Yuvarajan; Aloui, Fethi; Varuvel, Edwin GeoInducting hydrogen with biodiesel in a compression ignition (CI) engine contributes to improvising the performance characteristics of the engine and minimize long-term issues. Combustion of hydrogen along with intake air impacts positively in air quality by preventing the formation of toxic emissions like hydrocarbons (HC) and carbon monoxide (CO). The benefits of hydrogen such as good diffusion rate, lesser ignition energy and fast flame propagation rate promotes a more homogenously mixed air fuel ratio. This experimental work focuses on enhancement of the performance and combustion characteristics of a direct injection compression ignition (DICI) engine by enriching the biodiesel with various levels of hydrogen gas supplement at the intake manifold. The brake thermal efficiency of the engine with safflower oil biodiesel is 31.15 % which is far inferior to that of diesel with 34 %. As an effort to improve the performance characteristics of the CI engine, hydrogen gas is inducted at 4 %, 8 % and 12 % energy share. HC, CO and smoke emission decreases by 15.09 %, 34.6 % and 18 % respectively compared to neat biodiesel at full load of 5.2 kW. An opposite trend is observed in NOx emissions which are raised from 1650 ppm to 1852 ppm. A 12.2 % increase in NOx emissions are realized due to homogenous flammable mixture that combusts closer to Top dead center (TDC). The hydrogen enrichment with safflower oil biodiesel influences the combustion characteristics in a positive vein except for the NOx emissions, which could be minimized through the use of retrofit devices like selective catalytic reducer, diesel oxidation catalyst etc.Öğe Experimental investigation and performance prediction of gasoline engine operating parameters fueled with diisopropyl ether-gasoline blends: Response surface methodology based optimization(Elsevier Ltd., 2022) Sathyanarayanan, Seetharaman; Suresh, Sivan; Saravanan, C. G; Vikneswaran, M.; Dhamodaran, Gopinath; Sonthalia, Ankit; Joseph Shobana Bai, Femilda Josephin; Varuvel, Edwin GeoIn this research, gasoline engine performance and emission characteristics were studied when powered by diisopropyl ether-gasoline blends. The main objective of this study is to determine the behavior of diisopropyl ether-gasoline blends at various engine speeds and compression ratios. Further, the engine parameters were optimized using the response surface methodology. Enriched oxygen, higher latent heat of vaporization, and the readily volatile nature of the fuel enhanced the brake thermal efficiency and lowered the hydrocarbons and carbon monoxide due to a better combustion rate. The developed model exhibited superior R2 values with a 0.957 desirability factor. The optimum parameters such as speed, compression ratio, and fuel-blend concentrations were found at 2250 rpm, 10:1, and D25 (75% gasoline and 25% diisopropyl ether), respectively. The responses for the optimal input parameters were brake thermal efficiency (31.53%), specific fuel consumption (0.2923 kg/kWh), carbon monoxide (0.14% by Vol.), hydrocarbons (31 ppm), and oxides of nitrogen (708 ppm). The predicted values for optimum engine parameters were validated with the experimental data, and their percentage of absolute error was found to be less than 5%. Thus, the study concludes that diisopropyl-ether gasoline blends can be used as an alternative fuel to enhance the brake thermal efficiency and reduce the pollution level, and the proposed numerical model can predict the responses with high accuracy.Öğe Experimental study of droplet combustion and diesel engine characteristics for azolla biodiesel(TAYLOR & FRANCIS INC, 2022) Ganapathy, Saravanan Chidambaram; Seshadri, Thiruvenkatachari; Jayaraman, Sasikala; Raman, Vallinayagam; Malaiperumal, Vikneswaran; Varuvel, Edwin Geo; Joseph Shobana Bai, Femilda JosephinThis study pertains to studying the feasibility of the third-generation biodiesel obtained from one of the algae species known as Azolla microphylla by exploring their fundamental droplet combustion behavior and diesel engine characteristics. Firstly, the droplet evolution and burn rate are investigated for diesel, Azolla100, and Azolla50 (50% biodiesel +50% diesel) based on the experimental study of suspended droplet combustion. The diesel droplet showed steady combustion with linear regression for the decrease in droplet surface with time throughout its lifetime, while the Azolla100 and Azolla50 droplets showed a linear trend initially, and after a certain point, they resulted in a non-linear trend as a result of disruptive burning. The evaporation and burn rate was found to be higher for Azolla100 and Azolla50 than diesel during the steady burning period and thereafter it decreased with increasing Azolla concentration. The time evolution of droplet combustion images indicated that with increasing biodiesel concentration, the combustion duration was decreased due to secondary droplet ejections and microexplosion, and the residue burning duration was increased. The microexplosion increased the rate of combustion, however, droplet ejection resulted in incomplete combustion. Secondly, the engine experiments were performed for Azolla50 at different fuel injection pressures. The results showed that in-cylinder pressure and Brake thermal efficiency (BTE) for Azolla50 at 300 bar injection pressure were lower than diesel due to limitations with the physical properties of biodiesel. In order to improve the engine characteristics of Azolla50, this study increased the fuel injection pressure to 900 bar. As a result, the BTE for Azolla50 at 900 bar injection pressure is improved by 9.2% and 10.2% at low and full load conditions, respectively, compared to Azolla50 at 300 bar injection pressure. Overall, the spray-driven combustion for Azolla50 is limited by the physical properties of the biodiesel, which affects the mixture formation. On the other hand, the microexplosion and droplet ejection observed with the biodiesel during the combustion study would favor the combustion by improving the atomization and mixing process.Öğe A study on the feasibility of bergamot peel oil-gasoline blends for spark-ignition engines(Elsevier, 2022) Vikneswaran, M.; Saravanan, C.G.; Manickam, M.; Sasikala, J.; Joseph Shobana Bai, Femilda Josephin; Pugazhendhi, A.; Varuvel, E.G.In this research, an ample attempt was made to make use of oil extracted from bergamot fruit peel, which can be regarded as a renewable energy source. A systematic experimental approach was adopted to evaluate the feasibility of bergamot peel oil (BGT) as a substitute for gasoline fuel in spark-ignition (SI) engine applications. The oil derived from the rinds of the bergamot fruit was blended in gasoline on a volume basis in the ratios of 10:90, 20:80, 30:70, and 40:60 and experimentally tested in a multi-point fuel injection (MPFI) installed SI engine. The fuel properties of the BGT and its blends were tested. Endoscopic visualization technique was used to analyze the spatial flame distribution on a crank angle basis for the gasoline and bergamot blends. Also, the performance, combustion, and emission characteristics of bergamot-gasoline blends were evaluated, and the results were compared with sole gasoline at various engine brake powers. The endoscopic results revealed that bergamot-gasoline blends exhibited higher flame spread than sole gasoline. The performance study revealed that the brake thermal efficiency and specific fuel consumption exhibited by bergamot-gasoline blends were almost equivalent to that of sole gasoline. The mean in-cylinder pressure was marginally higher, and peak pressure crank angle degree was slightly advanced for bergamot-gasoline blends in comparison to that of gasoline fuel. With an increasing concentration of BGT in the blend, the hydrocarbon (HC) and carbon monoxide (CO) emission decreased at the expense of nitrogen oxides (NOx). Furthermore, BGT exhibits a research octane number (RON) of 80 and a calorific value comparable to that of gasoline, making it a potential candidate for SI engines. From the outcome of this study, it can be concluded that BGT could be a promising alternate biofuel for the partial replacement of gasoline in SI engines. © 2022 Elsevier LtdÖğe Ternary gasoline – pomegranate peel oil (PPO)- tertiary butyl alcohol (TBA) blend as an enabler to improve the spark-ignited engine performance and emissions(Elsevier Ltd, 2022) Nandakumar, C.; Saravanan, C. G.; Vallinayagam, Raman; Vikneswaran, M.; Jayaraman, Sasikala; Joseph Shobana Bai, Femilda Josephin; Varuvel, Edwin GeoThis paper reported a research work that investigated the compatibility of using pomegranate peel oil (PPO) as a substitute for gasoline in a spark-ignition engine. Initially, fuel characterization was performed for the PPO biofuel, and a blend was prepared by blending PPO in gasoline at a ratio of 10:90 by volume. Then, fuel properties were measured for the gasoline, PPO, and its blend. Subsequently, engine experiments were conducted for the blend at different load conditions with constant speed, and the performance, combustion, and emission results of the blend were compared with that of sole gasoline. By analyzing the results, it was found that the brake thermal efficiency of the 10% PPO blended gasoline was reduced by 1.2%, 0.6%, and 1%, at low load, mid load, and full load, respectively, when compared to sole gasoline. Whereas the HC and CO emission of the blend was higher by about 11.7% and 8.3%, respectively, at full load, when compared to that of gasoline. With an intent to improve the performance of the PPO blend, tertiary butyl alcohol (TBA) was blended with the 10% PPO blended gasoline in the volumetric proportion of 5%, 10%, and 15% to form ternary blends. The experimental study revealed that the performance of the PPO blend was enhanced significantly with increasing TBA proportion in the blend. The PPO blend with 15% TBA exhibited the highest BTE of 25.1%, which was 1.6% higher than gasoline at full load. The same blend resulted in the HC and CO emissions that were 9.2% and 9.6% lesser than gasoline, respectively, whereas NO emission was 7.6% higher than gasoline, at full load condition. The combustion analysis revealed that the start of combustion was delayed, with peak pressure and heat release rate being the maximum for ternary blends. From this investigation, it can be concluded that the sole gasoline can be replaced by the ternary blend as fuel for SI engine operation without requiring any major engine modification.