Yazar "Kanigur-Sultuybek, Gonul" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A molecular approach to maggot debridement therapy with Lucilia sericata and its excretions/secretions in wound healing(WILEY, 2021) Tombultürk, Fatma Kübra; Kanigur-Sultuybek, GonulChronic wounds caused by underlying physiological causes such as diabetic wounds, pressure ulcers, venous leg ulcers and infected wounds affect a significant portion of the population. In order to treat chronic wounds, a strong debridement, removal of necrotic tissue, elimination of infection and stimulation of granulation tissue are required. Maggot debridement therapy (MDT), which is an alternative treatment method based on history, has been used quite widely. MDT is an efficient, simple, cost-effective and reliable biosurgery method using mostly larvae of Lucilia sericata fly species. Larvae can both physically remove necrotic tissue from the wound site and stimulate wound healing by activating molecular processes in the wound area through the enzymes they secrete. The larvae can stimulate wound healing by activating molecular processes in the wound area through enzymes in their excretions/secretions (ES). Studies have shown that ES has antibacterial, antifungal, anti-inflammatory, angiogenic, proliferative, hemostatic and tissue-regenerating effects both in vivo and in vitro. It is suggested that these effects stimulate wound healing and accelerate wound healing by initiating a direct signal cascade with cells in the wound area. However, the enzymes and peptides in ES are mostly still undefined. Examining the molecular content of ES and the biological effects of these ingredients is quite important to illuminate the molecular mechanism underlying MDT. More importantly, ES has the potential to have positive effects on wound healing and to be used more as a therapeutic agent in the future, so it can be applied as an alternative to MDT in wound healing.Öğe Topical metformin accelerates wound healing by promoting collagen synthesis and inhibiting apoptosis in a diabetic wound model(Wiley, 2024) Tombulturk, Fatma Kubra; Soydas, Tugba; Kanigur-Sultuybek, GonulThe wound healing process, which is a pathophysiological process that includes various phases, is interrupted in diabetes due to hyperglycemia, and since deterioration occurs in these phases, a normal healing process is not observed. The aim of the current study is to investigate the proliferative and antiapoptotic effects of metformin on wound healing after topical application on diabetic and non-diabetic wounds. For this purpose, we applied metformin topically on the full-thickness excisional wound model we created in diabetic and nondiabetic groups. We investigated the effects of metformin on the apoptotic index by the Terminal deoxynucleotidyl transferase mediated dUTP Nick-End Labeling method and on collagen-I, collagen-III, p53, and c-jun expression levels by quantitative reverse transcription polymerase chain reaction technique in wound biopsy tissues. Our results showed that c-jun and p53 mRNA levels and apoptotic index increased with the effect of diabetes, while collagen synthesis was disrupted. As a result of the study, we showed that metformin increases cellular proliferation and has anti-apoptotic effects by increasing collagen-I/III expression and decreasing p53/c-jun level, especially in diabetic wounds and also in normal wounds. In conclusion, the topical effect of metformin on diabetic wounds reversed the adverse effects caused by diabetes, increasing the wound healing rate and improving the wound repair process.