Yazar "Kiani, Farzad" seçeneğine göre listele
Listeleniyor 1 - 20 / 24
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe 3D path planning method for multi-UAVs inspired by grey wolf algorithms(LIBRARY & INFORMATION CENTER, 2021) Kiani, Farzad; Seyyedabbasi, Amir; Aliyev, Royal; Shah, Mohammed Ahmed; Gulle, Murat UgurEfficient and collision-free pathfinding, between source and destination locations for multi-Unmanned Aerial Vehicles (UAVs), in a predefined environment is an important topic in 3D Path planning methods. Since path planning is a Non-deterministic Polynomial-time (NP-hard) problem, metaheuristic approaches can be applied to find a suitable solution. In this study, two efficient 3D path planning methods, which are inspired by Incremental Grey Wolf Optimization (I-GWO) and Expanded Grey Wolf Optimization (Ex-GWO), are proposed to solve the problem of determining the optimal path for UAVs with minimum cost and low execution time. The proposed methods have been simulated using two different maps with three UAVs with diverse sets of starting and ending points. The proposed methods have been analyzed in three parameters (optimal path costs, time and complexity, and convergence curve) by varying population sizes as well as iteration numbers. They are compared with well-known different variations of grey wolf algorithms (GWO, mGWO, EGWO, and RWGWO). According to path cost results of the defined case studies in this study, the I-GWO-based proposed path planning method (PPI-GWO) outperformed the best with %36.11. In the other analysis parameters, this method also achieved the highest success compared to the other five methods.Öğe Adapted-RRT: novel hybrid method to solve three-dimensional path planning problem using sampling and metaheuristic-based algorithms(Springer Science and Business Media Deutschland GmbH, 2021) Kiani, Farzad; Seyyedabbasi, Amir; Aliyev, Royal; Gulle, Murat Ugur; Basyildiz, Hasan; Shah, Mohammad AhmedThree-dimensional path planning for autonomous robots is a prevalent problem in mobile robotics. This paper presents three novel versions of a hybrid method designed to assist in planning such paths for these robots. In this paper, an improvement on Rapidly exploring Random Tree (RRT) algorithm, namely Adapted-RRT, is presented that uses three well-known metaheuristic algorithms, namely Grey Wolf Optimization (GWO), Incremental Grey Wolf Optimization (I-GWO), and Expanded Grey Wolf Optimization (Ex-GWO)). RRT variants, using these algorithms, are named Adapted-RRTGWO, Adapted-RRTI-GWO, and Adapted-RRTEx-GWO. The most significant shortcoming of the methods in the original sampling-based algorithm is their inability in finding the optimal paths. On the other hand, the metaheuristic-based algorithms are disadvantaged as they demand a predetermined knowledge of intermediate stations. This study is novel in that it uses the advantages of sampling and metaheuristic methods while eliminating their shortcomings. In these methods, two important operations (length and direction of each movement) are defined that play an important role in selecting the next stations and generating an optimal path. They try to find solutions close to the optima without collision, while providing comparatively efficient execution time and space complexities. The proposed methods have been simulated employing four different maps for three unmanned aerial vehicles, with diverse sets of starting and ending points. The results have been compared among a total of 11 algorithms. The comparison of results shows that the proposed path planning methods generally outperform various algorithms, namely BPIB-RRT*, tGSRT, GWO, I-GWO, Ex-GWO, PSO, Improved BA, and WOA. The simulation results are analysed in terms of optimal path costs, execution time, and convergence rate.Öğe Adaptive metaheuristic-based methods for autonomous robot path planning: Sustainable agricultural applications(MDPI, 2022) Kiani, Farzad; Seyyedabbasi, Amir; Nematzadeh, Sajjad; Candan, Fuat; Çevik, Taner; Anka, Fateme Ayşin; Randazzo, Giovanni; Lanza, Stefania; Muzirafuti, AnselmeThe increasing need for food in recent years means that environmental protection and sustainable agriculture are necessary. For this, smart agricultural systems and autonomous robots have become widespread. One of the most significant and persistent problems related to robots is 3D path planning, which is an NP-hard problem, for mobile robots. In this paper, efficient methods are proposed by two metaheuristic algorithms (Incremental Gray Wolf Optimization (I-GWO) and Expanded Gray Wolf Optimization (Ex-GWO)). The proposed methods try to find collision-free optimal paths between two points for robots without human intervention in an acceptable time with the lowest process costs and efficient use of resources in large-scale and crowded farmlands. Thanks to the methods proposed in this study, various tasks such as tracking crops can be performed efficiently by autonomous robots. The simulations are carried out using three methods, and the obtained results are compared with each other and analyzed. The relevant results show that in the proposed methods, the mobile robots avoid the obstacles successfully and obtain the optimal path cost from source to destination. According to the simulation results, the proposed method based on the Ex-GWO algorithm has a better success rate of 55.56% in optimal path cost. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Öğe The best approximation of generalized fuzzy numbers based on scaled metric(HINDAWI LTD, 2022) Allahviranloo, Tofigh; Saneifard, Rasoul; Saneifard, Rahim; Kiani, Farzad; Noeiaghdam, Samad; Govindan, VediyappanThe ongoing study has been vehemently allocated to propound an ameliorated alpha-weighted generalized approximation of an arbitrary fuzzy number. This method sets out to lessen the distance between the original fuzzy set and its approximation. In an effort to elaborate the study, formulas are designed for computing the ameliorated approximation by using a multitude of examples. The numerical samples will be exemplified to illuminate the improvement of the nearest triangular approximation (Abbasbandy et al., Triangular approximation of fuzzy numbers using alpha-weighted valuations, Soft Computing, 2019). A variety of features of the ameliorated approximation are then proved.Öğe A bioinspired discrete heuristic algorithm to generate the effective structural model of a program source code(Elsevier, 2023) Arasteh, Bahman; Sadegi, Razieh; Arasteh, Keyvan; Gunes, Peri; Kiani, Farzad; Torkamanian-Afshar, MahsaWhen the source code of a software is the only product available, program understanding has a substantial influence on software maintenance costs. The main goal in code comprehension is to extract information that is used in the software maintenance stage. Generating the structural model from the source code helps to alleviate the software maintenance cost. Software module clustering is thought to be a viable reverse engineering approach for building structural design models from source code. Finding the optimal clustering model is an NP-complete problem. The primary goals of this study are to minimize the number of connections between created clusters, enhance internal connections inside clusters, and enhance clustering quality. The previous approaches' main flaws were their poor success rates, instability, and inadequate modularization quality. The Olympiad optimization algorithm was introduced in this paper as a novel population-based and discrete heuristic algorithm for solving the software module clustering problem. This algorithm was inspired by the competition of a group of students to increase their knowledge and prepare for an Olympiad exam. The suggested algorithm employs a divide-and-conquer strategy, as well as local and global search methodologies. The effectiveness of the suggested Olympiad algorithm to solve the module clustering problem was evaluated using ten real-world and standard software benchmarks. According to the experimental results, on average, the modularization quality of the generated clustered models for the ten benchmarks is about 3.94 with 0.067 standard deviations. The proposed algorithm is superior to the prior algorithms in terms of modularization quality, convergence, and stability of results. Furthermore, the results of the experiments indicate that the proposed algorithm can be used to solve other discrete optimization problems efficiently. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Öğe A Bioinspired Test Generation Method Using Discretized and Modified Bat Optimization Algorithm(Mdpi, 2024) Arasteh, Bahman; Arasteh, Keyvan; Kiani, Farzad; Sefati, Seyed Salar; Fratu, Octavian; Halunga, Simona; Tirkolaee, Erfan BabaeeThe process of software development is incomplete without software testing. Software testing expenses account for almost half of all development expenses. The automation of the testing process is seen to be a technique for reducing the cost of software testing. An NP-complete optimization challenge is to generate the test data with the highest branch coverage in the shortest time. The primary goal of this research is to provide test data that covers all branches of a software unit. Increasing the convergence speed, the success rate, and the stability of the outcomes are other goals of this study. An efficient bioinspired technique is suggested in this study to automatically generate test data utilizing the discretized Bat Optimization Algorithm (BOA). Modifying and discretizing the BOA and adapting it to the test generation problem are the main contributions of this study. In the first stage of the proposed method, the source code of the input program is statistically analyzed to identify the branches and their predicates. Then, the developed discretized BOA iteratively generates effective test data. The fitness function was developed based on the program's branch coverage. The proposed method was implemented along with the previous one. The experiments' results indicated that the suggested method could generate test data with about 99.95% branch coverage with a limited amount of time (16 times lower than the time of similar algorithms); its success rate was 99.85% and the average number of required iterations to cover all branches is 4.70. Higher coverage, higher speed, and higher stability make the proposed method suitable as an efficient test generation method for real-world large software.Öğe Chaotic Sand Cat Swarm Optimization(Mdpi, 2023) Kiani, Farzad; Nematzadeh, Sajjad; Anka, Fateme Aysin; Findikli, Mine AfacanIn this study, a new hybrid metaheuristic algorithm named Chaotic Sand Cat Swarm Optimization (CSCSO) is proposed for constrained and complex optimization problems. This algorithm combines the features of the recently introduced SCSO with the concept of chaos. The basic aim of the proposed algorithm is to integrate the chaos feature of non-recurring locations into SCSO's core search process to improve global search performance and convergence behavior. Thus, randomness in SCSO can be replaced by a chaotic map due to similar randomness features with better statistical and dynamic properties. In addition to these advantages, low search consistency, local optimum trap, inefficiency search, and low population diversity issues are also provided. In the proposed CSCSO, several chaotic maps are implemented for more efficient behavior in the exploration and exploitation phases. Experiments are conducted on a wide variety of well-known test functions to increase the reliability of the results, as well as real-world problems. In this study, the proposed algorithm was applied to a total of 39 functions and multidisciplinary problems. It found 76.3% better responses compared to a best-developed SCSO variant and other chaotic-based metaheuristics tested. This extensive experiment indicates that the CSCSO algorithm excels in providing acceptable results.Öğe Detecting SQL injection attacks by binary gray wolf optimizer and machine learning algorithms(Springer London Ltd, 2024) Arasteh, Bahman; Aghaei, Babak; Farzad, Behnoud; Arasteh, Keyvan; Kiani, Farzad; Torkamanian-Afshar, MahsaSQL injection is one of the important security issues in web applications because it allows an attacker to interact with the application's database. SQL injection attacks can be detected using machine learning algorithms. The effective features should be employed in the training stage to develop an optimal classifier with optimal accuracy. Identifying the most effective features is an NP-complete combinatorial optimization problem. Feature selection is the process of selecting the training dataset's smallest and most effective features. The main objective of this study is to enhance the accuracy, precision, and sensitivity of the SQLi detection method. In this study, an effective method to detect SQL injection attacks has been proposed. In the first stage, a specific training dataset consisting of 13 features was prepared. In the second stage, two different binary versions of the Gray-Wolf algorithm were developed to select the most effective features of the dataset. The created optimal datasets were used by different machine learning algorithms. Creating a new SQLi training dataset with 13 numeric features, developing two different binary versions of the gray wolf optimizer to optimally select the features of the dataset, and creating an effective and efficient classifier to detect SQLi attacks are the main contributions of this study. The results of the conducted tests indicate that the proposed SQL injection detector obtain 99.68% accuracy, 99.40% precision, and 98.72% sensitivity. The proposed method increases the efficiency of attack detection methods by selecting 20% of the most effective features.Öğe Detection and prevention of attacks on the internet of things (IoT) and wireless sensor networks(GAZI UNIV, 2021) Taş, Oğuzhan; Kiani, FarzadIoT (Internet of Things) ya da diğer adıyla Nesnelerin İnterneti kavramı, internete bağlanan ve diğer cihazlarla iletişimde olan her nesneyi kapsamaktadır. Artık hayatımızın bir parçası haline gelecek otonom araçlar, akıllı buzdolabılar, akıllı çamaşır makineleri, akıllı tost makineleri, akıllı saatler gibi birçok IoT cihazı birbiriyle farklı kablosuz ağ teknolojilerini kullanarak haberleşebilirler. IoT cihazların birçok kritik alanda kullanılmasıyla birlikte IoT güveniğine karşı yapılan saldırılar da artmıştır. Bu saldırılarda IoT katmanlarına yapılarak veri gizliliği, veri bütünlüğü, veri tazeliği, veri erişilebilirliği, kimlik doğrulama gibi kriterler ihlal edilebilmektedir. Bu saldırıları önlemek amacıyla birçok güvenlik çözümü önerilmiştir, fakat sınırlı enerji, kısıtlı batarya süresi, zayıf işlemci gücü ve sınırlı hafıza gibi sınırlamalardan dolayı düşük güçlü IoT cihazlar üzerinde geleneksel güvenlik yöntemlerinin uygulanması mümkün değildir. Bu çalışmada, IoT cihazların güvenliğini tehdit eden saldırılar incelenerek, ağ katmanlarına göre detaylı şekilde sınıflandırılmış ve savunma teknikleri önerilmiştir..Öğe Drug repositioning in non-small cell lung cancer (NSCLC) using gene co-expression and drug-gene interaction networks analysis(Nature, 2022) MotieGhader, Habib; Tabrizi-Nezhadi, Parinaz; Abad Paskeh, Mahshid Deldar; Baradaran, Behzad; Mokhtarzadeh, Ahad; Hashemi, Mehrdad; Lanjanian, Hossein; Jazayeri, Seyed Mehdi; Maleki, Masoud; Khodadadi, Ehsan; Nematzadeh, Sajjad; Maghsoudloo, Mazaher; Masoudi-Nejad, Ali; Kiani, FarzadLung cancer is the most common cancer in men and women. This cancer is divided into two main types, namely non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Around 85 to 90 percent of lung cancers are NSCLC. Repositioning potent candidate drugs in NSCLC treatment is one of the important topics in cancer studies. Drug repositioning (DR) or drug repurposing is a method for identifying new therapeutic uses of existing drugs. The current study applies a computational drug repositioning method to identify candidate drugs to treat NSCLC patients. To this end, at frst, the transcriptomics profle of NSCLC and healthy (control) samples was obtained from the GEO database with the accession number GSE21933. Then, the gene co-expression network was reconstructed for NSCLC samples using the WGCNA, and two signifcant purple and magenta gene modules were extracted. Next, a list of transcription factor genes that regulate purple and magenta modules’ genes was extracted from the TRRUST V2.0 online database, and the TF–TG (transcription factors–target genes) network was drawn. Afterward, a list of drugs targeting TF–TG genes was obtained from the DGIdb V4.0 database, and two drug–gene interaction networks, including drug-TG and drug-TF, were drawn. After analyzing gene co-expression TF–TG, and drug–gene interaction networks, 16 drugs were selected as potent candidates for NSCLC treatment. Out of 16 selected drugs, nine drugs, namely Methotrexate, Olanzapine, Haloperidol, Fluorouracil, Nifedipine, Paclitaxel, Verapamil, Dexamethasone, and Docetaxel, were chosen from the drug-TG sub-network. In addition, nine drugs, including Cisplatin, Daunorubicin, Dexamethasone, Methotrexate, Hydrocortisone, Doxorubicin, Azacitidine, Vorinostat, and Doxorubicin Hydrochloride, were selected from the drug-TF sub-network. Methotrexate and Dexamethasone are common in drug-TG and drug-TF sub-networks. In conclusion, this study proposed 16 drugs as potent candidates for NSCLC treatment through analyzing gene co-expression, TF–TG, and drug–gene interaction networks.Öğe High-throughput analysis of the interactions between viral proteins and host cell RNAs(Elsevier Ltd, 2021) Lanjanian, Hossein; Nematzadeh, Sajjad; Hosseini, Shadi; Torkamanian-Afshar, Mahsa; Kiani, Farzad; Moazzam-Jazi, Maryam; Aydin, Nizamettin; Masoudi-Nejad, AliIndexed keywords Abstract RNA-protein interactions of a virus play a major role in the replication of RNA viruses. The replication and transcription of these viruses take place in the cytoplasm of the host cell; hence, there is a probability for the host RNA-viral protein and viral RNA-host protein interactions. The current study applies a high-throughput computational approach, including feature extraction and machine learning methods, to predict the affinity of protein sequences of ten viruses to three categories of RNA sequences. These categories include RNAs involved in the protein-RNA complexes stored in the RCSB database, the human miRNAs deposited at the mirBase database, and the lncRNA deposited in the LNCipedia database. The results show that evolution not only tries to conserve key viral proteins involved in the replication and transcription but also prunes their interaction capability. These proteins with specific interactions do not perturb the host cell through undesired interactions. On the other hand, the hypermutation rate of NSP3 is related to its affinity to host cell RNAs. The Gene Ontology (GO) analysis of the miRNA with affiliation to NSP3 suggests that these miRNAs show strongly significantly enriched GO terms related to the known symptoms of COVID-19. Docking and MD simulation study of the obtained miRNA through high-throughput analysis suggest a non-coding RNA (an RNA antitoxin, ToxI) as a natural aptamer drug candidate for NSP5 inhibition. Finally, a significant interplay of the host RNA-viral protein in the host cell can disrupt the host cell's system by influencing the RNA-dependent processes of the host cells, such as a differential expression in RNA. Furthermore, our results are useful to identify the side effects of mRNA-based vaccines, many of which are caused by the off-label interactions with the human lncRNAs.Öğe Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems(Elsevier B.V., 2021) Seyyedabbasi, Amir; Aliyev, Royal; Kiani, Farzad; Gulle, Murat Ugur; Basyildiz, Hasan; Shah, Mohammad AhmedThis paper introduces three hybrid algorithms that help in solving global optimization problems using reinforcement learning along with metaheuristic methods. Using the algorithms presented, the search agents try to find a global optimum avoiding the local optima trap. Compared to the classical metaheuristic approaches, the proposed algorithms display higher success in finding new areas as well as exhibiting a more balanced performance while in the exploration and exploitation phases. The algorithms employ reinforcement agents to select an environment based on predefined actions and tasks. A reward and penalty system is used by the agents to discover the environment, done dynamically without following a predetermined model or method. The study makes use of Q-Learning method in all three metaheuristic algorithms, so-called RLI?GWO, RLEx?GWO, and RLWOA algorithms, so as to check and control exploration and exploitation with Q-Table. The Q-Table values guide the search agents of the metaheuristic algorithms to select between the exploration and exploitation phases. A control mechanism is used to get the reward and penalty values for each action. The algorithms presented in this paper are simulated over 30 benchmark functions from CEC 2014, 2015 and the results obtained are compared with well-known metaheuristic and hybrid algorithms (GWO, RLGWO, I-GWO, Ex-GWO, and WOA). The proposed methods have also been applied to the inverse kinematics of the robot arms problem. The results of the used algorithms demonstrate that RLWOA provides better solutions for relevant problems.Öğe Improving the performance of hierarchical wireless sensor networks using the metaheuristic algorithms: efficient cluster head selection(Emerald Group Holdings Ltd., 2021) Kiani, Farzad; Seyyedabbasi, Amir; Nematzadeh, SajjadPurpose: Efficient resource utilization in wireless sensor networks is an important issue. Clustering structure has an important effect on the efficient use of energy, which is one of the most critical resources. However, it is extremely vital to choose efficient and suitable cluster head (CH) elements in these structures to harness their benefits. Selecting appropriate CHs and finding optimal coefficients for each parameter of a relevant fitness function in CHs election is a non-deterministic polynomial-time (NP-hard) problem that requires additional processing. Therefore, the purpose of this paper is to propose efficient solutions to achieve the main goal by addressing the related issues. Design/methodology/approach: This paper draws inspiration from three metaheuristic-based algorithms; gray wolf optimizer (GWO), incremental GWO and expanded GWO. These methods perform various complex processes very efficiently and much faster. They consist of cluster setup and data transmission phases. The first phase focuses on clusters formation and CHs election, and the second phase tries to find routes for data transmission. The CH selection is obtained using a new fitness function. This function focuses on four parameters, i.e. energy of each node, energy of its neighbors, number of neighbors and its distance from the base station. Findings: The results obtained from the proposed methods have been compared with HEEL, EESTDC, iABC and NR-LEACH algorithms and are found to be successful using various analysis parameters. Particularly, I-HEELEx-GWO method has provided the best results. Originality/value: This paper proposes three new methods to elect optimal CH that prolong the networks lifetime, save energy, improve overhead along with packet delivery ratio.Öğe Maximizing coverage and maintaining connectivity in WSN and decentralized IoT: an efficient metaheuristic-based method for environment-aware node deployment(Springer Science and Business Media Deutschland GmbH, 2022) Nematzadeh, Sajjad; Torkamanian-Afshar, Mahsa; Seyyedabbasi, Amir; Kiani, FarzadThe node deployment problem is a non-deterministic polynomial time (NP-hard). This study proposes a new and efficient method to solve this problem without the need for predefined circumstances about the environments independent of terrain. The proposed method is based on a metaheuristic algorithm and mimics the grey wolf optimizer (GWO) algorithm. In this study, we also suggested an enhanced version of the GWO algorithm to work adaptively in such problems and named it Mutant-GWO (MuGWO). Also, the suggested model ensures connectivity by generating topology graphs and potentially supports data transmission mechanisms. Therefore, the proposed method based on MuGWO can enhance resources utilization, such as reducing the number of nodes, by maximizing the coverage rate and maintaining the connectivity. While most studies assume classical rectangle uniform environments, this study also focuses on custom (environment-aware) maps in line with the importance and requirements of the real world. The motivation of supporting custom maps by this study is that environments can consist of custom shapes with prioritized and critical areas. In this way, environment awareness halts the deployment of nodes in undesired regions and averts resource waste. Besides, novel multi-purpose fitness functions of the proposed method satisfy a convenient approach to calculate costs instead of using complicated processes. Accordingly, this method is suitable for large-scale networks thanks to the capability of the distributed architecture and the metaheuristic-based approach. This study justifies the improvements in the suggested model by presenting comparisons with a Deterministic Grid-based approach and the Original GWO. Moreover, this method outperforms the fruit fly optimization algorithm, bat algorithm (BA), Optimized BA, harmony search, and improved dynamic deployment technique based on genetic algorithm methods in declared scenarios in literature, considering the results of simulations.Öğe Metaheuristic algorithms in IoT: optimized edge node localization(springer link, 2022) Kiani, Farzad; Seyyedabbasi, AmirIn this study, a new hybrid method is proposed by using the advantages of Grey Wolf Optimizer (GWO) and Moth-Flame Optimization (MFO) algorithms. The proposed hybrid metaheuristic algorithm tries to find the near-optimal solution with high efficiency by using the advantage of both algorithms. At the same time, the shortcomings of each will be eliminated. The proposed algorithm is used to solve the edge computing node localization problem, which is one of the important problems on the Internet of Things (IoT) systems, with the least error rate. This algorithm has shown a successful performance in solving this problem with a smooth and efficient position update mechanism. It was also applied to 30 famous benchmark functions (CEC2015 and CEC2019) to prove the accuracy and general use of the proposed method. It has been proven from the results that it is the best algorithm with a success rate of 54% and 57%, respectively. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.Öğe A Novel Metaheuristic Based Method for Software Mutation Test Using the Discretized and Modified Forrest Optimization Algorithm(Springer, 2023) Arasteh, Bahman; Gharehchopogh, Farhad Soleimanian; Gunes, Peri; Kiani, Farzad; Torkamanian-Afshar, MahsaThe number of detected bugs by software test data determines the efficacy of the test data. One of the most important topics in software engineering is software mutation testing, which is used to evaluate the efficiency of software test methods. The syntactical modifications are made to the program source code to make buggy (mutated) programs, and then the resulting mutants (buggy programs) along with the original programs are executed with the test data. Mutation testing has several drawbacks, one of which is its high computational cost. Higher execution time of mutation tests is a challenging problem in the software engineering field. The major goal of this work is to reduce the time and cost of mutation testing. Mutants are inserted in each instruction of a program using typical mutation procedures and tools. Meanwhile, in a real-world program, the likelihood of a bug occurrence in the simple and non-bug-prone sections of a program is quite low. According to the 80-20 rule, 80 percent of a program's bugs are discovered in 20% of its fault-prone code. The first stage of the suggested solution uses a discretized and modified version of the Forrest optimization algorithm to identify the program's most bug-prone paths; the second stage injects mutants just in the identified bug-prone instructions and data. In the second step, the mutation operators are only injected into the identified instructions and data that are bug-prone. Studies on standard benchmark programs have shown that the proposed method reduces about 27.63% of the created mutants when compared to existing techniques. If the number of produced mutants is decreased, the cost of mutation testing will also decrease. The proposed method is independent of the platform and testing tool. The results of the experiments confirm that the use of the proposed method in each testing tool such as Mujava, Muclipse, Jester, and Jumble makes a considerable mutant reduction.Öğe Optimal characterization of a microwave transistor using grey wolf algorithms(SPRINGER, 2021) Kiani, Farzad; Seyyedabbasi, Amir; Mahouti, PeymanModern time microwave stages require low power consumption, low size, low-noise amplifier (LNA) designs with high-performance measures. These demands need a single transistor LNA design, which is a challenging multi-objective, multi-dimensional optimization problem that requires solving objectives with non-linear feasible design target space, that can only be achieved by optimally selecting the source (Z(S)) and load (Z(L)) terminations. Meta-heuristic algorithms (MHAs) have been extensively used as a search and optimization method in many problems in the field of science, commerce, and engineering. Since feasible design target space (FDTS) of an LNA transistor (NE3511S02 biased at VDS = 2 V and IDS = 7 mA) is a multi-objective multi-variable optimization problem the MHA can be considered as a suitable choice. Three different types of grey wolf variants inspired algorithms had been applied to the LNA FDTS problem to obtain the optimal source and load terminations that satisfies the required performance measures of the aimed LNA design. Furthermore, the obtained results are justified via the use of the Electromagnetic Simulator tool AWR. As a result, an efficient optimization method for optimal determination of Z(S) and Z(L) terminations of a high-performance LNA design had been achieved.Öğe Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms(Elsevier B.V., 2023) Seyyedabbasi, Amir; Kiani, Farzad; Allahviranloo, Tofigh; Fernandez-Gamiz, Unai; Noeiaghdam, SamadEfficient resource use is a very important issue in wireless sensor networks and decentralized IoT-based systems. In this context, a smooth pathfinding mechanism can achieve this goal. However, since this problem is a Non-deterministic Polynomial-time (NP-hard) problem type, metaheuristic algorithms can be used. This article proposes two new energy-efficient routing methods based on Incremental Grey Wolf Optimization (I-GWO) and Expanded Grey Wolf Optimization (Ex-GWO) algorithms to find optimal paths. Moreover, in this study, a general architecture has been proposed, making it possible for many different metaheuristic algorithms to work in an adaptive manner as well as these algorithms. In the proposed methods, a new fitness function is defined to determine the next hop based on some parameters such as residual energy, traffic, distance, buffer size and hop size. These parameters are important measurements in subsequent node selections. The main purpose of these methods is to minimize traffic, improve fault tolerance in related systems, and increase reliability and lifetime. The two metaheuristic algorithms mentioned above are used to find the best values ??for these parameters. The suggested methods find the best path of any length for the path between any source and destination node. In this study, no ready dataset was used, and the established network and system were run in the simulation environment. As a result, the optimal path has been discovered in terms of the minimum cost of the best paths obtained by the proposed methods. These methods can be very useful in decentralized peer-to-peer and distributed systems. The metrics for performance evaluation and comparisons are i) network lifetime, ii) the alive node ratio in the network, iii) the packet delivery ratio and lost data packets, iv) routing overhead, v) throughput, and vi) convergence behavior. According to the results, the proposed methods generally choose the most suitable and efficient ways with minimum cost. These methods are compared with Genetic Algorithm Based Routing (GAR), Artificial Bee Colony Based routing (ABCbased), Multi-Agent Protocol based on Ant Colony Optimization (MAP-ACO), and Wireless Sensor Networks based on Grey Wolf optimizer. (GWO-WSN) algorithms. The simulation results show that the proposed methods outperform the others.Öğe Parallel molecular alteration between Alzheimer's disease and major depressive disorder in the human brain dorsolateral prefrontal cortex: an insight from gene expression and methylation profile analyses(Genetics Soc Japan, 2022) Rastad, Saber; Barjaste, Nadia; Lanjanian, Hossein; Moeini, Ali; Kiani, Farzad; Masoudi-Nejad, AliAlzheimer's disease (AD) and major depressive disorder (MDD) are comorbid neuropsychiatric disorders that are among the leading causes of long-term disability worldwide. Recent research has indicated the existence of parallel molecular mechanisms between AD and MDD in the dorsolateral prefrontal cortex (DLPFC). However, the premorbid history and molecular mechanisms have not yet been well characterized. In this study, differentially expressed gene (DEG), differentially co-expressed gene and protein-protein interaction (PPI) network propagation analyses were applied to gene expression data of postmortem DLPFC samples from human individuals diagnosed with and without AD or MDD (AD: cases = 310, control = 157; MDD: cases = 75, control = 161) to identify the main genes in the two disorders' specific and shared biological pathways. Subsequently, the results were evaluated using another four assessment datasets (n1 = 230, n2 = 65, n3 = 58, n4 = 48). Moreover, the postmortem DLPFC methylation status of human subjects with AD or MDD was compared using 68 and 608 samples for AD and MDD, respectively. Eight genes (XIST, RPS4Y1, DDX3Y, USP9Y, DDX3X, TMSB4Y, ZFY and E1FAY) were common DEGs in DLPFC of subjects with AD or MDD. These genes play important roles in the nervous system and the innate immune system. Furthermore, we found HSPG2, DAB2IP, ARHGAP22, TXNRD1, MYO10, SDK1 and KRT82 as common differentially methylated genes in the DLPFC of cases with AD or MDD. Finally, as evidence of shared molecular mechanisms behind this comorbidity, we propose some genes as candidate biomarkers for both AD and MDD. However, more research is required to clarify the molecular mechanisms underlying the co-existence of these two important neuropsychiatric disorders.Öğe PSCSO: enhanced sand cat swarm optimization inspired by the political system to solve complex problems(Elsevier, 2023) Kiani, Farzad; Anka, Fateme Ayşin; Erenel, FahriThe Sand Cat Swarm Optimization (SCSO) algorithm is a recently introduced metaheuristic with balanced behavior in the exploration and exploitation phases. However, it is not fast in convergence and may not be successful in finding the global optima, especially for complex problems since it starts the exploitation phase late. Moreover, the performance of SCSO is also affected by incorrect position as it depends on the location of the global optimum. Therefore, this study proposes a new method for the SCSO algorithm with a multidisciplinary principle inspired by the Political (Parliamentary) system, which is named PSCSO. The suggested algorithm increases the chances of finding the global solution by randomly choosing positions between the position of the candidate's best solution available so far and the current position during the exploitation phase. In this regard, a new coefficient is defined that affects the exploration and exploitation phases. In addition, a new mathematical model is introduced to use in the exploitation phase. The performance of the PSCSO algorithm is analyzed on a total of 41 benchmark functions from CEC2015, 2017, and 2019. In addition, its performance is evaluated in four classical engineering problems. The proposed algorithm is compared with the SCSO, Stochastic variation and Elite collaboration in SCSO (SE-SCSO), Hybrid SCSO (HSCSO), Parliamentary Optimization Algorithm (POA), and Arithmetic Optimization Algorithm (AOA) algorithms, which have been proposed in recent years. The ob-tained results depict that the PSCSO algorithm performs better or equivalently to the compared optimization algorithms.