Yazar "Koubisy, M.S.I." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Dielectric, structural, optical and radiation shielding properties of newly synthesized CaO–SiO2–Na2O–Al2O3 glasses: experimental and theoretical investigations on impact of Tungsten(III) oxide(Springer Science and Business Media Deutschland, 2022) Zhukovsky, M.; Koubisy, M.S.I.; Zakaly, H.M.H.; Ali, Ahmed S.; Issa, Shams A.M.; Tekin, Hüseyin OzanThrough experimental and modeling techniques, this research sought to investigate the reflections of partial replacement of CaO–SiO2 with Tungsten(III) oxide and its effect on structural, optical, and physical properties. The melt quenching technique was used to produce several glass samples with a nominal composition of 5Na2O–10Al2O3–(42.5 ? x)SiO2–(42.5 ? x)CaO–xWO3 system (where x = 0, 0.2, 0.4, and 0.6 wt.&). The amorphous structure of calcium-silicon glasses was determined experimentally using the XRD technique. UV and density studies were also performed to determine optical and material properties. To determine the effect of this replacement on nuclear radiation shielding improvement, the linear attenuation coefficient was computed across a broad energy range of 0.015–15 MeV using narrow beam geometry and the simulated gamma-ray transmission technique. The radiation parameters were simulated using sophisticated Monte Carlo simulations using the FLUKA general-purpose radiation transport algorithm and compared using the NIST XCOm theoretical computation. To maximize the substitution's synergistic impact, the present investigation's findings were correlated with each other for the purpose of determining availability for nuclear shielding purposes. It was discovered that when the WO3 content rises from 0 to 20% wt— percent, both direct and indirect bandgaps reduce, resulting in increased transparency. In addition, the Urbach energy (Eu) yields a rise in proportion to the amount of doping elements in the samples. On the other hand, gamma-ray attenuation measurements revealed that shielding parameters are directly proportional to the WO3-wt percent concentration; furthermore, the addition of WO3 substantially enhances the shielding capacity of the investigated glasses against gamma radiation. It is observed that when additional WO3 is added, both the real and imaginary components of the dielectric constant increase. The most effective shield was determined to be the NSCW20 sample. As a result, a WO3-calcium-silicon glass containing 20% WO3 was selected as the optimum radiation filter. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.Öğe Fabrication of newly developed tungsten III-oxide glass family: Physical, structural, mechanical, radiation shielding effectiveness(Elsevier GmbH, 2022) Issa, Shams A.M.; Tekin, Hüseyin Ozan; Saudi, H.A.; Koubisy, M.S.I.; Zhukovsky, M.; Ali, Ahmed S.; Zakaly, Hesham M.H.A series of glasses based on the nominal composition of (Na2O)5 + (Al2O3)10 + (SiO2)(85+x)/2 + (CaO)(85+x)/2 + (WO3)x glasses system were produced utilizing the usual melt quenching process in this study. Experimental techniques and the FLUKA Monte Carlo algorithm were used to examine the properties of silicon-calcium glasses containing tungstate-III-oxide. For five glass structures identified according to (Na2O)5+(Al2O3)10+(SiO2)(85+x)/2+(CaO)(85+x)/2+(WO3)x (0 ?x ? 20 wt-%) glass composition, the impact of tungstate-III-oxide with ratios of (0 ?x ? 20 wtpercent) on radiation shielding characteristics of glasses was set. The densities of the produced glasses fluctuated between 2.847 g/cm3 and 3.122 g/cm3 when tungstate-III-oxide was substituted. The produced sample densities, which are important in assessing radiation shielding features, rose as the WO3 concentration increased, according to our first results. In addition, the structure of each sample was studied using FT-IR. FT-IR showed that when WO3 levels rose, the connection level increased, and the FT-IR spectra shifted to higher wavenumbers. The synthesis of WO3 in a glass matrix enhances the structural network by raising oxygen levels, which leads to the transition of SiO2 into - CaO. Elastic moduli and Ultrasonic velocities were found to rise as the ratio of WO3 in the generated samples increased. These two approaches were used to model linear and mass attenuation coefficients, photons-transmittance versus photon energy, radiation protection efficiency against photon energy, and absorber thickness (experimental and simulation). Based on the results, it can be stated that the w20 sample, which contains 20 wt%, will play the most effective function in radiation shielding. Increases in WO3 led in considerable increases in linear and mass attenuation coefficient values, which directly contribute to the development of the glass's radiation shielding characteristics. © 2022 Elsevier GmbH