Yazar "Liu, Xiaoyang" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A cascade information diffusion prediction model integrating topic features and cross-attention(Elsevier, 2023) Liu, Xiaoyang; Wang, Haotian; Bouyer, AsgaraliInformation cascade prediction is a crucial task in social network analysis. However, previous research has only focused on the impact of social relationships on cascade information diffusion, while ignoring the differences caused by the characteristics of cascade information itself, which limits the performance of prediction results. We propose a novel cascade information diffusion prediction model (Topic-HGAT). Firstly, we extract features from different topic features to enhance the learned cascade information representation. To better implement this method, we use hypergraphs to better characterize cascade information and dynamically learn multiple diffusion sub-hypergraphs according to the time process; secondly, we introduce cross-attention mechanisms to learn each other's feature representations from the perspectives of both user representation and cascade representation, thereby achieving deep fusion of the two features. This solves the problem of poor feature fusion effect caused by simply calculating self-attention on learned user representation and cascade representation in previous studies; finally, we conduct comparative experiments on four real datasets, including Twitter and Douban. Experimental results show that the proposed Topic-HGAT model achieves the highest improvements of 2.91% and 1.59% on Hits@100 and MAP@100 indicators, respectively, compared to other 8 baseline models, verifying the rationality and effectiveness of the proposed Topic-HGAT model.Öğe Two-pronged feature reduction in spectral clustering with optimized landmark selection(Elsevier, 2024) Rouhi, Alireza; Bouyer, Asgarali; Arasteh, Bahman; Liu, XiaoyangSpectral clustering is widely employed for clustering data points, particularly for non-linear and non-convex structures in high-dimensional spaces. However, it faces challenges due to the high computational cost of eigen decomposition operations and the performance limitations with high-dimensional data. In this paper, we introduce BVA_LSC, a novel spectral clustering algorithm designed to address these challenges. Firstly, we incorporate an advanced feature reduction stage utilizing Barnes-Hut t-SNE and a deep Variational Autoencoder (VAE) to efficiently reduce the dimensionality of the data, thereby accelerating eigen decomposition. Secondly, we propose an adaptive landmark selection strategy that combines the Grey Wolf Optimizer (GWO) with a novel objective function and K-harmonic means clustering. This strategy dynamically determines an optimal number of landmarks, enhancing the representativeness of the data and reducing the size of the similarity matrix. We assess the performance of our algorithm on various standard datasets, demonstrating its superiority over state-of-the-art methods in terms of accuracy and efficiency.