Yazar "Noeiaghdam, Samad" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The best approximation of generalized fuzzy numbers based on scaled metric(HINDAWI LTD, 2022) Allahviranloo, Tofigh; Saneifard, Rasoul; Saneifard, Rahim; Kiani, Farzad; Noeiaghdam, Samad; Govindan, VediyappanThe ongoing study has been vehemently allocated to propound an ameliorated alpha-weighted generalized approximation of an arbitrary fuzzy number. This method sets out to lessen the distance between the original fuzzy set and its approximation. In an effort to elaborate the study, formulas are designed for computing the ameliorated approximation by using a multitude of examples. The numerical samples will be exemplified to illuminate the improvement of the nearest triangular approximation (Abbasbandy et al., Triangular approximation of fuzzy numbers using alpha-weighted valuations, Soft Computing, 2019). A variety of features of the ameliorated approximation are then proved.Öğe Classical and intelligent methods in model extraction and stabilization of a dual-axis reaction wheel pendulum: a comparative study(Elsevier B.V., 2022) Tavakol Aghaei, Vahid; Akbulut, Batuhan Ekin; Tan, Deniz; Allahviranloo, Tofigh; Fernandez Gamiz, Unai; Noeiaghdam, Samad; Bezci, Yüksel EdizControlling underactuated open-loop unstable systems is challenging. In this study, first, both nonlinear and linear models of a dual-axis reaction wheel pendulum (DA-RWP) are extracted by employing Lagrangian equations which are based on energy methods. Then to control the system and stabilize the pendulum's angle in the upright position, fuzzy logic based controllers for both x ? y directions are developed. To show the efficiency of the designed intelligent controller, comparisons are made with its classical optimal control counterparts. In our simulations, as proof of the reliability and robustness of the fuzzy controller, two scenarios including noise-disturbance-free and noisy-disturbed situations are considered. The comparisons made between the classical and fuzzy-based controllers reveal the superiority of the proposed fuzzy logic controller, in terms of time response. The simulation results of our experiments in terms of both mathematical modeling and control can be deployed as a baseline for robotics and aerospace studies as developing walking humanoid robots and satellite attitude systems, respectively.Öğe Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms(Elsevier B.V., 2023) Seyyedabbasi, Amir; Kiani, Farzad; Allahviranloo, Tofigh; Fernandez-Gamiz, Unai; Noeiaghdam, SamadEfficient resource use is a very important issue in wireless sensor networks and decentralized IoT-based systems. In this context, a smooth pathfinding mechanism can achieve this goal. However, since this problem is a Non-deterministic Polynomial-time (NP-hard) problem type, metaheuristic algorithms can be used. This article proposes two new energy-efficient routing methods based on Incremental Grey Wolf Optimization (I-GWO) and Expanded Grey Wolf Optimization (Ex-GWO) algorithms to find optimal paths. Moreover, in this study, a general architecture has been proposed, making it possible for many different metaheuristic algorithms to work in an adaptive manner as well as these algorithms. In the proposed methods, a new fitness function is defined to determine the next hop based on some parameters such as residual energy, traffic, distance, buffer size and hop size. These parameters are important measurements in subsequent node selections. The main purpose of these methods is to minimize traffic, improve fault tolerance in related systems, and increase reliability and lifetime. The two metaheuristic algorithms mentioned above are used to find the best values ??for these parameters. The suggested methods find the best path of any length for the path between any source and destination node. In this study, no ready dataset was used, and the established network and system were run in the simulation environment. As a result, the optimal path has been discovered in terms of the minimum cost of the best paths obtained by the proposed methods. These methods can be very useful in decentralized peer-to-peer and distributed systems. The metrics for performance evaluation and comparisons are i) network lifetime, ii) the alive node ratio in the network, iii) the packet delivery ratio and lost data packets, iv) routing overhead, v) throughput, and vi) convergence behavior. According to the results, the proposed methods generally choose the most suitable and efficient ways with minimum cost. These methods are compared with Genetic Algorithm Based Routing (GAR), Artificial Bee Colony Based routing (ABCbased), Multi-Agent Protocol based on Ant Colony Optimization (MAP-ACO), and Wireless Sensor Networks based on Grey Wolf optimizer. (GWO-WSN) algorithms. The simulation results show that the proposed methods outperform the others.