Yazar "Park, Sang-Beom" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Feature data-driven-reinforced fuzzy radial basis function neural network classifier with the aid of preprocessing techniques and particle swarm optimization(Springer, 2023) Park, Sang-Beom; Oh, Sung-Kwun; Pedrycz, WitoldIn this study, reinforced fuzzy radial basis function neural networks (FRBFNN) classifier driven by feature extracted data completed with the aid of effectively preprocessing techniques and evolutionary optimization, and its comprehensive design methodology are introduced. An Overall structure of the reinforced FRBFNN comprises the preprocessing part, the premise part and the consequence part of fuzzy rules of the network. In the preprocessing part, four types of preprocessing algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), combination of PCA and LDA (Hybrid PCA) and fuzzy transform are considered. To extract feature data suitable to characterize signal data, the feature extraction of information data is carried out through the dimensionality reduction done by the preprocessing technique, and then the reduced data are used as the input to the FRBFNN classifier. In the premise part of fuzzy rules of the network, the number of fuzzy rules is determined according to the number of clusters by fuzzy c-means (FCM) clustering. The fitness values of individual fuzzy rules are obtained based on data distribution. In the consequence part of fuzzy rules of the network, the parameters of connection weights located between the hidden layer and the output layer of FRBFNN classifier are estimated by means of the least square estimation. Particle swarm optimization (PSO) is exploited for structural as well as parametric optimization in the FRBFNN classifier. The parameters to be optimized by PSO are related to six factors such as the determination of whether to use data preprocessing, the type of data preprocessing technique, the number of input variables reduced by the preprocessing technique, fuzzification coefficient and the number of fuzzy rules used in fuzzy c-means (FCM) clustering, and the type of connection weights. By using diverse benchmark dataset obtained from UCI repository, the classification performance of the reinforced FRBFNN classifier was evaluated. Through a variety of classification algorithms existed in the Weka data mining software (Weka), the classification performance of the reinforced FRBFNN classifier was compared as well. The superiority of the proposed classifier is demonstrated through Friedman test. Furthermore, we assessed the classification performance of the reinforced FRBFNN classifier applied to black plastic wastes spectral data acquired from Raman and Laser induced breakdown spectroscopy equipment for the practical application of the material sorting system of the black plastic wastes.Öğe Rule-based fuzzy neural networks realized with the aid of linear function Prototype-driven fuzzy clustering and layer Reconstruction-based network design strategy(Pergamon-Elsevier Science Ltd, 2023) Park, Sang-Beom; Oh, Sung-Kwun; Kim, Eun-Hu; Pedrycz, WitoldIn this study, we introduce novel fuzzy neural networks designed with the aid of linear function prototype-driven fuzzy clustering (LFPFC) and layer reconstruction-based network design strategy to deal with the regression problem. The LFPFC constitutes a new clustering technique inspired by the fuzzy c-regression model (FCRM) clustering unlike fuzzy c-means (FCM) clustering LFPFC represents the prototypes of clusters as linear functions, and this can lead to more reliable data analysis of complex regression problems. We propose two types of LFPFC such as an estimated output-based LFPFC and a distance-based LFPFC. The estimated output-based LFPFC uses the output estimated on a basis of the simple model instead of the target output to calculate the centroid of LFPFC. A centroid of distance-based LFPFC is computed through the Euclidean distance between input data and the centroid of the cluster. By using two kinds of LFPFC approaches, we propose three different types of fuzzy neural networks: i) the fuzzy neural networks through layer reconstruction-based network design strategy consists of two models. The first model serves as an estimate of the desired output and the estimated output is used in the LFPFC of the second model. ii) In the fuzzy neural networks applied to the basic architecture of distance-based LFPFC, the hidden layer using the membership function changes to basic distance-based LFPFC, and the partition matrix obtained from LFPFC is used as the output of the hidden layer. iii) in the fuzzy neural network with the advanced architecture of distance-based LFPFC, an additional auxiliary layer is considered between the hidden and output layers to estimate the membership function of output space through LFPFC. In the experiments, we evaluate the performance index of the proposed models using publicly available machine learning datasets. The superiority of the proposed fuzzy neural networks designed by using LFPFC is demon-strated through the comparative analysis with the diverse regression models offered in the Weka data mining software. By conducting the Friedman test we show that the proposed model exhibits visible competitiveness from the viewpoint of performance. In addition, a real-world Portland cement dataset is dealt with to demon-strate the superiority of the models designed with the aid of LFPFC and reinforced layer reconstruction-based network design strategy.