Yazar "Qaisar, Rizwan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Cardiovascular changes under the microgravity environment and the gut microbiome(Elsevier, 2024) Siddiqui, Ruqaiyyah; Qaisar, Rizwan; Al-Dahash, Khulood; Altelly, Ahmad Hashem; Elmoselhi, Adel B.; Khan, Naveed AhmedIn view of the critical role the gut microbiome plays in human health, it has become clear that astronauts' gut microbiota composition changes after spending time in space. Astronauts are exposed to several risks in space, including a protracted period of microgravity, radiation, and mechanical unloading of the body. Several deleterious effects of such an environment are reported, including orthostatic intolerance, cardiovascular endothelial dysfunction, cellular and molecular changes, and changes in the composition of the gut microbiome. Herein, the correlation between the gut microbiome and cardiovascular disease in a microgravity environment is evaluated. Additionally, the relationship between orthostatic hypotension, cardiac shrinkage and arrhythmias during spaceflight, and cellular alterations during spaceflight is reviewed. Given its impact on human health in general, modifying the gut microbiota may significantly promote astronaut health and performance. This is merited, given the prospect of augmented human activities in future space missions.Öğe Effect of microgravity on the gut microbiota bacterial composition in a hindlimb unloading model(MDPI, 2022) Siddiqui, Ruqaiyyah; Qaisar, Rizwan; Khan, Naveed Ahmed; Alharbi, Ahmad M.; Alfahemi, Hasan; Elmoselhi, AdelWe utilised a ground-based microgravity hindlimb unloading (HU) mouse model to elucidate the gut microbiota bacterial changes in mice under a simulated microgravity environment. Four-month-old, male C57/Bl6 mice were randomly divided into ground-based controls and the HU groups and kept under controlled environmental conditions. For the microgravity environment, the mice were suspended in special cages individually for 20 days. At the end of the suspension, the mice were sacrificed; gut dissections were performed, followed by a metagenomic analysis of bacterial species, which was carried out by extracting DNA and 16S rRNA analysis. The results revealed that the gut bacterial communities of mice under gravity and microgravity were different. Notably, our findings revealed differences in the bacterial community structure. Around 449 bacterial OTUs were specific to mice kept under normal gravity versus 443 bacterial OTUs under microgravity conditions. In contrast, 694 bacterial OTUs were common to both groups. When the relative abundance of taxa was analyzed, Bacteroidetes dominated the gut (64.7%) of normal mice. Conversely, mice in the microgravity environment were dominated by Firmicutes (42.7%), and the relative abundance of Bacteroidetes differed significantly between the two groups (p < 0.05). The distribution of Muribaculaceae between normal mice versus microgravity mice was significantly different, at 62% and 36.4%, respectively (p < 0.05). Furthermore, a significant decrease in 11 bacteria was observed in mice under simulated microgravity, including Akkermansia muciniphila, Eubacterium coprostanoligenes, Bacteroides acidifaciens, Clostridium leptum, Methylorubrum extorquens, Comamonas testosterone, Desulfovibrio fairfieldensis, Bacteroides coprocola, Aerococcus urinaeequi, Helicobacter hepaticus, and Burkholderiales. Further studies are needed to elucidate gut bacterial metabolites of these identified bacterial species in microgravity conditions and normal environment. Notably, the influence of these metabolites on obesity, neuroprotection, musculoskeletal and cardiovascular dysfunction, longevity, inflammation, health, and disease in astronauts ought to be investigated and will be important in developing procedures against adverse effects in astronauts following space travel.Öğe Enhancing microbial diversity as well as multi-organ health in hind-limb unloaded mice(Elsevier, 2024) Shama, Shama; Ranade, Anu, V; Qaisar, Rizwan; Khan, Naveed Ahmed; Tauseef, Isfahan; Elmoselhi, Adel; Siddiqui, RuqaiyyahDuring space travel, the gut microbiota is changed which can lead to health-related issues. Previously, we utilized the hind-limb unloaded (HU) mouse, which is an established ground-based in-vivo model of microgravity and observed altered gut microbiota. In this study, we evaluated the beneficial effects of novel bacterial conditioned media in HU mice to understand if they can offset the effects of unloading in the HU mouse model. We aimed to explore the influence of bacterial conditioned media on diversity and quantity of intestinal microbes in HU mice, and investigated the microarchitecture of mice retinas and kidneys to evaluate the potential systemic effects of bacterial conditioned media in HU mice. Four-month-old, male C57/Bl6 mice were separated into groups: including the ground-based control group, the HU group mice fed with vehicle as placebo (HU-placebo mice), and the HU group fed with bacterial conditioned media (HU-CP mice) and kept under controlled environmental conditions for three weeks. Next, mice were sacrificed; gut dissections were conducted, and metagenomic analysis of bacterial species was performed via DNA extraction and 16S rRNA analysis. The results revealed an HU-induced reduction in intestinal microbial diversity, and an increase in pathogenic bacteria dominated by Firmicutes (45%). In contrast, supplementation with bacterial conditioned media for three weeks led to a significant increase in gut microbial diversity with noticeable changes in the OTUs abundance in the HU mice. Additionally, HU-induced muscle weakness and structural abnormalities in the retina and kidney were partially prevented with bacterial conditioned media. Moreover, a greater diversity of several bacteria in the HUCP was observed including, Bacteriodota, Firmicutes, Proteobacteria, Actionobacteriota, Verrucomicorbiota, Cyanobacteria, Gemmatimonadota, Acidobacteriota, Chloroflexi, Myxococcota, and others. Prospective research involving molecular mechanistic studies are needed to comprehend the systemic effects of bacterial metabolites conditioned media on experimental animal models under chronic stress.