Yazar "Rafienia, Mohammad" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bioprinted membranes for corneal tissue engineering: a review(MDPI, 2022) Orash Mahmoud Salehi, Amin; Poursamar, Seyed Ali; Zarrabi, Ali; Sefat, Farshid; Mamidi, Narsimha; Behrouz, Mahmoud Jabbarvand; Rafienia, MohammadCorneal transplantation is considered a convenient strategy for various types of corneal disease needs. Even though it has been applied as a suitable solution for most corneal disorders, patients still face several issues due to a lack of healthy donor corneas, and rejection is another unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing and regeneration. Several approaches are tested to develop a substrate with equal transmittance and mechanical properties to improve the regeneration of cornea tissue. In this regard, bioprinted scaffolds have recently received sufficient attention in simulating corneal structure, owing to their spectacular spatial control which produces a three-cell-loaded-dimensional corneal structure. In this review, the anatomy and function of different layers of corneal tissue are highlighted, and then the potential of the 3D bioprinting technique for promoting corneal regeneration is also discussed. © 2022 by the authors.Öğe Fabrication of 3D porous polyurethane-graphene oxide scaffolds by a sequential two-step processing for non-load bearing bone defects(Iop Publishing Ltd, 2024) Bagheri, Fatemeh; Saudi, Ahmad; Bidram, Elham; Asefnejad, Azadeh; Sanati, Alireza; Zarrabi, Ali; Rafienia, MohammadBone defects as a common orthopedic disease lead to severe pains over a long period. Scaffolds are novel approaches in tissue engineering to treat bone problems and deal with their challenges. Here, 3D porous polyurethane (PU) scaffolds containing graphene oxide (GO) with different percentages (0, 0.1, 0.3, and 0.5 wt%) were developed through a combination of freeze-drying and salt etching techniques for bone tissue engineering applications. The morphologies of scaffolds, physicochemical properties, the degree of crystallinity, and hydrophilicity were evaluated by SEM, FTIR, XRD, and water contact angle assay, respectively. The porosity, degradation behavior, compressive strength, and elastic modulus of 3D porous scaffolds were also determined. To assess the scaffold bioactivity, the morphology of the deposited calcium phosphate layer on the scaffold with macro-structure was evaluated by SEM images. The viability and adhesion of MG63 osteoblast-like cells cultured on the fabricated scaffolds were examined by MTT assay and SEM images, respectively. The results show that adding GO particles not only had no effect on the interconnectivity and porosity of 3D porous macroscopic structures of neat PU but also smaller and more uniformed microscopically pores were obtained. The crystallinity, water contact angle, and weight loss of scaffolds increased as the higher GO concentrations were employed. Followed by increasing GO contents from 0 to 0.5 wt%, the compressive strength and Young's modulus were increased by 232% and 245%, respectively. The bioactivity of scaffolds was fostered as GO concentration increased. Although, the MTT assay proved the biocompatibility of PU scaffolds containing 0.1 and 0.3 wt% GO, the samples loaded with 0.5 GO had a negative impact on the viability of MG63 cell lines. In conclusion, the present study demonstrates a high potential of PU scaffolds loaded with 0.1 and 0.3 wt% GO particles in bone tissue engineering applications.Öğe Graphene oxide quantum dot-chitosan nanotheranostic platform as a pH-responsive carrier for improving curcumin uptake internalization: In vitro & in silico study(Elsevier, 2022) Esmaeili, Yasaman; Seyedhosseini Ghaheh, Hooria; Ghasemi, Fahimeh; Shariati, Laleh; Rafienia, Mohammad; Bidram, Elham; Zarrabi, AliWe herein fabricated a cancer nanotheranostics platform based on Graphene Oxide Quantum Dot-Chitosan-polyethylene glycol nanoconjugate (GOQD-CS-PEG), which were targeted with MUC-1 aptamer towards breast and colon tumors. The interaction between aptamer and MUC-1 receptor on the desired cells was investigated utilizing molecular docking. The process of curcumin release was investigated, as well as the potential of the produced nanocomposite in targeted drug delivery, specific detection, and photoluminescence imaging. The fluorescence intensity of GOQD-CS-PEG was reduced due to transferred energy between (cytosine-guanin) base pairs in the hairpin structure of the aptamer, resulting in an “on/off” photoluminescence bio-sensing. Interestingly, the integration of pH-responsive chitosan nanoparticles in the nanocomposite results in a smart nanocomposite capable of delivering more curcumin to desired tumor cells. When selectively binds to the MUC-1 receptor, the two strands of aptamer separate in acidic conditions, resulting in a sustained drug release and photoluminescence recovery. The cytotoxicity results also revealed that the nanocomposite was more toxic to MUC-1-overexpressed tumor cells than to negative control cell lines, confirming its selective targeting. As a result, the proposed nanocomposite could be used as an intelligent cancer nanotheranostic platform for tracing MUC-1-overexpressed tumor cells and targeting them with great efficiency and selectivity. © 2022 Elsevier B.V.Öğe Smartphone-assisted lab-in-a-tube device using gold nanocluster-based aptasensor for detection of MUC1-overexpressed tumor cells(Elsevier, 2023) Sanati, Alireza; Esmaeili, Yasaman; Khavani, Mohammad; Bidram, Elham; Rahimi, Azadeh; Dabiri, Arezou; Rafienia, MohammadDeveloping smartphone technology for point-of-care diagnosis is one of the current favorable trends in the field of biosensors. In fact, using smartphones can provide better accessibility and facility for rapid diagnosis of diseases. On the other hand, the detection of circulating tumor cells (CTCs) is one of the recent methods for the early diagnosis of cancer. Here, a new smartphone-assisted lab-in-a-tube device is introduced for the detection of Mucin 1 (MUC1) overexpressed tumor-derived cell lines using gold nanoclusters (GNCs)-based aptasensor.