Yazar "Sargon, Mustafa Fevzi" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biochemical, pathological and ultrastructural investigation of whether lamotrigine has neuroprotective efficacy against spinal cord ischemia reperfusion injury(Elsevier Inc., 2021) Kahveci, Fatih Ozan; Kahveci, Ramazan; Gökçe, Emre Cemal; Gökçe, Aysun; Kısa, Üçler; Sargon, Mustafa Fevzi; Fesli, Ramazan; Sarı, Muhammed Fatih; Gürer, BoraIntroduction: Lamotrigine, an anticonvulsant drug with inhibition properties of multi-ion channels, has been shown to be able to attenuates secondary neuronal damage by influencing different pathways. The aim of this study was to look into whether lamotrigine treatment could protect the spinal cord from experimental spinal cord ischemia-reperfusion injury. Materials and methods: Thirty-two rats, eight rats per group, were randomly assigned to the sham group in which only laparotomy was performed, and to the ischemia, methylprednisolone and lamotrigine groups, where the infrarenal aorta was clamped for thirty minutes to induce spinal cord ischemia-reperfusion injury. Tissue samples belonging to spinal cords were harvested from sacrificed animals twenty-four hours after reperfusion. Tumor necrosis factor-alpha levels, interleukin-1 beta levels, nitric oxide levels, superoxide dismutase activity, catalase activity, glutathione peroxidase activity, malondialdehyde levels and caspase-3 activity were studied. Light and electron microscopic evaluations were also performed to reveal the pathological alterations. Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test was used to evaluate neurofunctional status at the beginning of the study and just before the animals were sacrificed. Results: Lamotrigine treatment provided significant improvement in the neurofunctional status by preventing the increase in cytokine expression, increased lipid peroxidation and oxidative stress, depletion of antioxidant enzymes activity and increased apoptosis, all of which contributing to spinal cord damage through different paths after ischemia reperfusion injury. Furthermore, lamotrigine treatment has shown improved results concerning the histopathological and ultrastructural scores and the functional tests. Conclusion: These results proposed that lamotrigine may be a useful therapeutic agent to prevent the neuronal damage developing after spinal cord ischemia-reperfusion injury.Öğe Mildronate Has Ameliorative Effects on the Experimental Ischemia/Reperfusion Injury Model in the Rabbit Spinal Cord(Elsevier Science Inc, 2023) Ozaydin, Dilan; Bektasoglu, Pinar Kuru; Ture, Durukan; Bozkurt, Huseyin; Erguder, Berrin Imge; Sargon, Mustafa Fevzi; Arikok, Ata Turker-BACKGROUND: Mildronate is a useful anti-ischemic agent and has antiinflammatory, antioxidant, and neuro-protective activities. The aim of this study is to investigate the potential neuroprotective effects of mildronate in the experimental rabbit spinal cord ischemia/reperfusion injury (SCIRI) model. -METHODS: Rabbits were randomized into 5 groups of 8 animals as groups 1 (control), 2 (ischemia), 3 (vehicle), 4 (30 mg/kg methylprednisolone [MP]), and 5 (100 mg/kg mildr-onate). The control group underwent only laparotomy. The other groups have the spinal cord ischemia model by a 20-minute aortic occlusion just caudal to the renal artery. The malondialdehyde and catalase levels and caspase-3, myeloperoxidase, and xanthine oxidase activities were investigated. Neurologic, histopathologic, and ultrastruc-tural evaluations were also performed. -RESULTS: The serum and tissue myeloperoxidase, malondialdehyde, and caspase-3 values of the ischemia and vehicle groups were statistically significantly higher than those of the MP and mildronate groups (P < 0.001). Serum and tissue catalase values of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P< 0.001). The histopathologic evaluation showed a statistically significantly lower score in the mildronate and MP groups than in the ischemia and vehicle groups (P < 0.001). The modified Tarlov scores of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001).CONCLUSIONS: This study presented the antiin-flammatory, antioxidant, antiapoptotic, and neuroprotective effects of mildronate on SCIRI. Future studies will elucidate its possible use in clinical settings in SCIRI.