Yazar "Sepehri, Arash" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Application of industry 4.0 in the procurement processes of supply chains: a systematic literature review(MDPI AG, 2021) Jahani, Niloofar; Sepehri, Arash; Vandchali, Hadi Rezaei; Babaee Tirkolaee, ErfanAbstract Author keywords Abstract The fourth industrial revolution has significantly changed the traditional way of managing supply chains. The applications of Industry 4.0 (I4.0) technologies such as the Internet of Things (IoT) and Artificial Intelligence (AI) in different processes of supply chains have assisted companies to improve their performance. Procurement can be considered a critical process in supply chain management since it can provide novel opportunities for supply chains to improve their efficiency and effectiveness. However, I4.0 applications can be costly and may not be reasonably affordable. Therefore, the benefits of implementing these technologies should be clarified for procurement managers before investing in the digitalization of the procurement process. Despite the importance of this issue, few papers have attempted to address the effects of I4.0 technologies and smart systems in procurement. To fill this gap, a Systematic Literature Review (SLR) on the applications of I4.0 technologies in procurement has been used in this study. By reviewing 70 papers through appropriate keywords, a conceptual framework is developed to classify different value propositions provided by the different applications of I4.0 technologies in procurement processes. Results reveal nine value propositions that can provide a better understanding for the procurement department to analyze the benefits of implementing the related I4.0 technologies in different activities. Finally, findings and future study opportunities are concluded.Öğe Designing a reliable-sustainable supply chain network: adaptive m-objective ?-constraint method(Springer, 2024) Sepehri, Arash; Tirkolaee, Erfan Babaee; Simic, Vladimir; Ali, Sadia SamarIn the current era emphasizing sustainability and circularity, supply chain network design is a critical challenge for making reliable decisions. The optimization of facility location-allocation inventory problems (FLAIPs) holds the key to achieving dependable product delivery with reduced costs and carbon emissions. Despite the importance of these challenges, a substantial research gap exists regarding economic, reliability, and sustainability criteria for FLAIPs. This paper aims to fill this gap by introducing a multi-objective mixed-integer linear programming model, focusing on configuring a reliable sustainable supply chain network. The model addresses three key objectives: minimizing costs, minimizing emissions, and maximizing reliability. A notable contribution of this research lies in elaborating on five levels of a supply chain network catering to the delivery of multiple products across various periods. Another novelty is the simultaneous incorporation of economic, environmental, and reliability objectives in the network design-a facet rarely addressed in prior research. Results highlight that varying demand levels for each facility lead to altered trade-offs between objectives, empowering practitioners to make diverse decisions in facility location allocation. The proposed mathematical model undergoes validation through numerical examples and sensitivity analysis of parameters. The paper concludes by presenting theoretical and managerial implications, contributing valuable insights to the field of sustainable supply chains.