Yazar "Seyyedabbasi, Amir" seçeneğine göre listele
Listeleniyor 1 - 18 / 18
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe 3D path planning method for multi-UAVs inspired by grey wolf algorithms(LIBRARY & INFORMATION CENTER, 2021) Kiani, Farzad; Seyyedabbasi, Amir; Aliyev, Royal; Shah, Mohammed Ahmed; Gulle, Murat UgurEfficient and collision-free pathfinding, between source and destination locations for multi-Unmanned Aerial Vehicles (UAVs), in a predefined environment is an important topic in 3D Path planning methods. Since path planning is a Non-deterministic Polynomial-time (NP-hard) problem, metaheuristic approaches can be applied to find a suitable solution. In this study, two efficient 3D path planning methods, which are inspired by Incremental Grey Wolf Optimization (I-GWO) and Expanded Grey Wolf Optimization (Ex-GWO), are proposed to solve the problem of determining the optimal path for UAVs with minimum cost and low execution time. The proposed methods have been simulated using two different maps with three UAVs with diverse sets of starting and ending points. The proposed methods have been analyzed in three parameters (optimal path costs, time and complexity, and convergence curve) by varying population sizes as well as iteration numbers. They are compared with well-known different variations of grey wolf algorithms (GWO, mGWO, EGWO, and RWGWO). According to path cost results of the defined case studies in this study, the I-GWO-based proposed path planning method (PPI-GWO) outperformed the best with %36.11. In the other analysis parameters, this method also achieved the highest success compared to the other five methods.Öğe Adapted-RRT: novel hybrid method to solve three-dimensional path planning problem using sampling and metaheuristic-based algorithms(Springer Science and Business Media Deutschland GmbH, 2021) Kiani, Farzad; Seyyedabbasi, Amir; Aliyev, Royal; Gulle, Murat Ugur; Basyildiz, Hasan; Shah, Mohammad AhmedThree-dimensional path planning for autonomous robots is a prevalent problem in mobile robotics. This paper presents three novel versions of a hybrid method designed to assist in planning such paths for these robots. In this paper, an improvement on Rapidly exploring Random Tree (RRT) algorithm, namely Adapted-RRT, is presented that uses three well-known metaheuristic algorithms, namely Grey Wolf Optimization (GWO), Incremental Grey Wolf Optimization (I-GWO), and Expanded Grey Wolf Optimization (Ex-GWO)). RRT variants, using these algorithms, are named Adapted-RRTGWO, Adapted-RRTI-GWO, and Adapted-RRTEx-GWO. The most significant shortcoming of the methods in the original sampling-based algorithm is their inability in finding the optimal paths. On the other hand, the metaheuristic-based algorithms are disadvantaged as they demand a predetermined knowledge of intermediate stations. This study is novel in that it uses the advantages of sampling and metaheuristic methods while eliminating their shortcomings. In these methods, two important operations (length and direction of each movement) are defined that play an important role in selecting the next stations and generating an optimal path. They try to find solutions close to the optima without collision, while providing comparatively efficient execution time and space complexities. The proposed methods have been simulated employing four different maps for three unmanned aerial vehicles, with diverse sets of starting and ending points. The results have been compared among a total of 11 algorithms. The comparison of results shows that the proposed path planning methods generally outperform various algorithms, namely BPIB-RRT*, tGSRT, GWO, I-GWO, Ex-GWO, PSO, Improved BA, and WOA. The simulation results are analysed in terms of optimal path costs, execution time, and convergence rate.Öğe Adaptive metaheuristic-based methods for autonomous robot path planning: Sustainable agricultural applications(MDPI, 2022) Kiani, Farzad; Seyyedabbasi, Amir; Nematzadeh, Sajjad; Candan, Fuat; Çevik, Taner; Anka, Fateme Ayşin; Randazzo, Giovanni; Lanza, Stefania; Muzirafuti, AnselmeThe increasing need for food in recent years means that environmental protection and sustainable agriculture are necessary. For this, smart agricultural systems and autonomous robots have become widespread. One of the most significant and persistent problems related to robots is 3D path planning, which is an NP-hard problem, for mobile robots. In this paper, efficient methods are proposed by two metaheuristic algorithms (Incremental Gray Wolf Optimization (I-GWO) and Expanded Gray Wolf Optimization (Ex-GWO)). The proposed methods try to find collision-free optimal paths between two points for robots without human intervention in an acceptable time with the lowest process costs and efficient use of resources in large-scale and crowded farmlands. Thanks to the methods proposed in this study, various tasks such as tracking crops can be performed efficiently by autonomous robots. The simulations are carried out using three methods, and the obtained results are compared with each other and analyzed. The relevant results show that in the proposed methods, the mobile robots avoid the obstacles successfully and obtain the optimal path cost from source to destination. According to the simulation results, the proposed method based on the Ex-GWO algorithm has a better success rate of 55.56% in optimal path cost. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Öğe Binary Sand Cat Swarm Optimization Algorithm for Wrapper Feature Selection on Biological Data(Mdpi, 2023) Seyyedabbasi, AmirIn large datasets, irrelevant, redundant, and noisy attributes are often present. These attributes can have a negative impact on the classification model accuracy. Therefore, feature selection is an effective pre-processing step intended to enhance the classification performance by choosing a small number of relevant or significant features. It is important to note that due to the NP-hard characteristics of feature selection, the search agent can become trapped in the local optima, which is extremely costly in terms of time and complexity. To solve these problems, an efficient and effective global search method is needed. Sand cat swarm optimization (SCSO) is a newly introduced metaheuristic algorithm that solves global optimization algorithms. Nevertheless, the SCSO algorithm is recommended for continuous problems. bSCSO is a binary version of the SCSO algorithm proposed here for the analysis and solution of discrete problems such as wrapper feature selection in biological data. It was evaluated on ten well-known biological datasets to determine the effectiveness of the bSCSO algorithm. Moreover, the proposed algorithm was compared to four recent binary optimization algorithms to determine which algorithm had better efficiency. A number of findings demonstrated the superiority of the proposed approach both in terms of high prediction accuracy and small feature sizes.Öğe Enhanced multi-strategy bottlenose dolphin optimizer for UAVs path planning(Elsevier Science Inc, 2024) Hu, Gang; Huang, Feiyang; Seyyedabbasi, Amir; Wei, GuoThe path planning of unmanned aerial vehicle is a complex practical optimization problem, which is an important part of unmanned aerial vehicle technology. For constrained path planning problem, the traditional path planning methods can not deal with the complex constraint conditions well, and the classical nature-inspired algorithms will find the local optimal solution due to the lack of optimization ability. In this paper, an enhanced multi-strategy bottlenose dolphin optimizer is proposed to solve the unmanned aerial vehicle path planning problem under threat environments. Firstly, the introduction of fish aggregating device strategy that simulates the living habits of sharks enriches the behavioral diversity of the population. Secondly, random mixed mutation strategy and chaotic opposition-based learning strategy expand the exploration range of the algorithm in the solution space by disturbing the positions of some individuals and generating the opposite population respectively. Finally, after balancing the exploration and exploitation ability of the algorithm more reasonably through the mutation factor and energy factor, this paper proposes a new swarm intelligence algorithm. After verifying the adaptability and efficiency of the proposed algorithm through different types of test functions, this paper further highlights the advantages of the proposed algorithm in finding the optimal feasible path in the unmanned aerial vehicle path planning model based on four constraints.Öğe Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems(Elsevier B.V., 2021) Seyyedabbasi, Amir; Aliyev, Royal; Kiani, Farzad; Gulle, Murat Ugur; Basyildiz, Hasan; Shah, Mohammad AhmedThis paper introduces three hybrid algorithms that help in solving global optimization problems using reinforcement learning along with metaheuristic methods. Using the algorithms presented, the search agents try to find a global optimum avoiding the local optima trap. Compared to the classical metaheuristic approaches, the proposed algorithms display higher success in finding new areas as well as exhibiting a more balanced performance while in the exploration and exploitation phases. The algorithms employ reinforcement agents to select an environment based on predefined actions and tasks. A reward and penalty system is used by the agents to discover the environment, done dynamically without following a predetermined model or method. The study makes use of Q-Learning method in all three metaheuristic algorithms, so-called RLI?GWO, RLEx?GWO, and RLWOA algorithms, so as to check and control exploration and exploitation with Q-Table. The Q-Table values guide the search agents of the metaheuristic algorithms to select between the exploration and exploitation phases. A control mechanism is used to get the reward and penalty values for each action. The algorithms presented in this paper are simulated over 30 benchmark functions from CEC 2014, 2015 and the results obtained are compared with well-known metaheuristic and hybrid algorithms (GWO, RLGWO, I-GWO, Ex-GWO, and WOA). The proposed methods have also been applied to the inverse kinematics of the robot arms problem. The results of the used algorithms demonstrate that RLWOA provides better solutions for relevant problems.Öğe Improving the performance of hierarchical wireless sensor networks using the metaheuristic algorithms: efficient cluster head selection(Emerald Group Holdings Ltd., 2021) Kiani, Farzad; Seyyedabbasi, Amir; Nematzadeh, SajjadPurpose: Efficient resource utilization in wireless sensor networks is an important issue. Clustering structure has an important effect on the efficient use of energy, which is one of the most critical resources. However, it is extremely vital to choose efficient and suitable cluster head (CH) elements in these structures to harness their benefits. Selecting appropriate CHs and finding optimal coefficients for each parameter of a relevant fitness function in CHs election is a non-deterministic polynomial-time (NP-hard) problem that requires additional processing. Therefore, the purpose of this paper is to propose efficient solutions to achieve the main goal by addressing the related issues. Design/methodology/approach: This paper draws inspiration from three metaheuristic-based algorithms; gray wolf optimizer (GWO), incremental GWO and expanded GWO. These methods perform various complex processes very efficiently and much faster. They consist of cluster setup and data transmission phases. The first phase focuses on clusters formation and CHs election, and the second phase tries to find routes for data transmission. The CH selection is obtained using a new fitness function. This function focuses on four parameters, i.e. energy of each node, energy of its neighbors, number of neighbors and its distance from the base station. Findings: The results obtained from the proposed methods have been compared with HEEL, EESTDC, iABC and NR-LEACH algorithms and are found to be successful using various analysis parameters. Particularly, I-HEELEx-GWO method has provided the best results. Originality/value: This paper proposes three new methods to elect optimal CH that prolong the networks lifetime, save energy, improve overhead along with packet delivery ratio.Öğe Maximizing coverage and maintaining connectivity in WSN and decentralized IoT: an efficient metaheuristic-based method for environment-aware node deployment(Springer Science and Business Media Deutschland GmbH, 2022) Nematzadeh, Sajjad; Torkamanian-Afshar, Mahsa; Seyyedabbasi, Amir; Kiani, FarzadThe node deployment problem is a non-deterministic polynomial time (NP-hard). This study proposes a new and efficient method to solve this problem without the need for predefined circumstances about the environments independent of terrain. The proposed method is based on a metaheuristic algorithm and mimics the grey wolf optimizer (GWO) algorithm. In this study, we also suggested an enhanced version of the GWO algorithm to work adaptively in such problems and named it Mutant-GWO (MuGWO). Also, the suggested model ensures connectivity by generating topology graphs and potentially supports data transmission mechanisms. Therefore, the proposed method based on MuGWO can enhance resources utilization, such as reducing the number of nodes, by maximizing the coverage rate and maintaining the connectivity. While most studies assume classical rectangle uniform environments, this study also focuses on custom (environment-aware) maps in line with the importance and requirements of the real world. The motivation of supporting custom maps by this study is that environments can consist of custom shapes with prioritized and critical areas. In this way, environment awareness halts the deployment of nodes in undesired regions and averts resource waste. Besides, novel multi-purpose fitness functions of the proposed method satisfy a convenient approach to calculate costs instead of using complicated processes. Accordingly, this method is suitable for large-scale networks thanks to the capability of the distributed architecture and the metaheuristic-based approach. This study justifies the improvements in the suggested model by presenting comparisons with a Deterministic Grid-based approach and the Original GWO. Moreover, this method outperforms the fruit fly optimization algorithm, bat algorithm (BA), Optimized BA, harmony search, and improved dynamic deployment technique based on genetic algorithm methods in declared scenarios in literature, considering the results of simulations.Öğe Metaheuristic algorithms in IoT: optimized edge node localization(springer link, 2022) Kiani, Farzad; Seyyedabbasi, AmirIn this study, a new hybrid method is proposed by using the advantages of Grey Wolf Optimizer (GWO) and Moth-Flame Optimization (MFO) algorithms. The proposed hybrid metaheuristic algorithm tries to find the near-optimal solution with high efficiency by using the advantage of both algorithms. At the same time, the shortcomings of each will be eliminated. The proposed algorithm is used to solve the edge computing node localization problem, which is one of the important problems on the Internet of Things (IoT) systems, with the least error rate. This algorithm has shown a successful performance in solving this problem with a smooth and efficient position update mechanism. It was also applied to 30 famous benchmark functions (CEC2015 and CEC2019) to prove the accuracy and general use of the proposed method. It has been proven from the results that it is the best algorithm with a success rate of 54% and 57%, respectively. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.Öğe Optimal characterization of a microwave transistor using grey wolf algorithms(SPRINGER, 2021) Kiani, Farzad; Seyyedabbasi, Amir; Mahouti, PeymanModern time microwave stages require low power consumption, low size, low-noise amplifier (LNA) designs with high-performance measures. These demands need a single transistor LNA design, which is a challenging multi-objective, multi-dimensional optimization problem that requires solving objectives with non-linear feasible design target space, that can only be achieved by optimally selecting the source (Z(S)) and load (Z(L)) terminations. Meta-heuristic algorithms (MHAs) have been extensively used as a search and optimization method in many problems in the field of science, commerce, and engineering. Since feasible design target space (FDTS) of an LNA transistor (NE3511S02 biased at VDS = 2 V and IDS = 7 mA) is a multi-objective multi-variable optimization problem the MHA can be considered as a suitable choice. Three different types of grey wolf variants inspired algorithms had been applied to the LNA FDTS problem to obtain the optimal source and load terminations that satisfies the required performance measures of the aimed LNA design. Furthermore, the obtained results are justified via the use of the Electromagnetic Simulator tool AWR. As a result, an efficient optimization method for optimal determination of Z(S) and Z(L) terminations of a high-performance LNA design had been achieved.Öğe Optimal data transmission and pathfinding for WSN and decentralized IoT systems using I-GWO and Ex-GWO algorithms(Elsevier B.V., 2023) Seyyedabbasi, Amir; Kiani, Farzad; Allahviranloo, Tofigh; Fernandez-Gamiz, Unai; Noeiaghdam, SamadEfficient resource use is a very important issue in wireless sensor networks and decentralized IoT-based systems. In this context, a smooth pathfinding mechanism can achieve this goal. However, since this problem is a Non-deterministic Polynomial-time (NP-hard) problem type, metaheuristic algorithms can be used. This article proposes two new energy-efficient routing methods based on Incremental Grey Wolf Optimization (I-GWO) and Expanded Grey Wolf Optimization (Ex-GWO) algorithms to find optimal paths. Moreover, in this study, a general architecture has been proposed, making it possible for many different metaheuristic algorithms to work in an adaptive manner as well as these algorithms. In the proposed methods, a new fitness function is defined to determine the next hop based on some parameters such as residual energy, traffic, distance, buffer size and hop size. These parameters are important measurements in subsequent node selections. The main purpose of these methods is to minimize traffic, improve fault tolerance in related systems, and increase reliability and lifetime. The two metaheuristic algorithms mentioned above are used to find the best values ??for these parameters. The suggested methods find the best path of any length for the path between any source and destination node. In this study, no ready dataset was used, and the established network and system were run in the simulation environment. As a result, the optimal path has been discovered in terms of the minimum cost of the best paths obtained by the proposed methods. These methods can be very useful in decentralized peer-to-peer and distributed systems. The metrics for performance evaluation and comparisons are i) network lifetime, ii) the alive node ratio in the network, iii) the packet delivery ratio and lost data packets, iv) routing overhead, v) throughput, and vi) convergence behavior. According to the results, the proposed methods generally choose the most suitable and efficient ways with minimum cost. These methods are compared with Genetic Algorithm Based Routing (GAR), Artificial Bee Colony Based routing (ABCbased), Multi-Agent Protocol based on Ant Colony Optimization (MAP-ACO), and Wireless Sensor Networks based on Grey Wolf optimizer. (GWO-WSN) algorithms. The simulation results show that the proposed methods outperform the others.Öğe Probabilistic optimal planning of multiple photovoltaics and battery energy storage systems in distribution networks: A boosted equilibrium optimizer with time-variant load models(Elsevier, 2023) Elseify, Mohamed A.; Seyyedabbasi, Amir; Dominguez-Garcia, Jose Luis; Kamel, SalahIn recent years, there has been a rapid increase in distributed generation (DG) technologies incorporated into distribution networks (DNs) to meet the challenge of load growth. However, the stochastic nature of renewable energy, such as photovoltaic (PV), makes the amount of energy produced uncertain. This uncertainty, along with changes in generation and load demand, can increase energy losses and voltage instability. To address this issue, energy storage systems can be integrated to decrease the effects of the intermittency associated with renewable technologies. This paper proposes a new variant of an equilibrium optimizer (EO) based on reinforced learning, named RLEO, for optimal incorporation of multiple battery energy storage (BES) units integrated synchronously with solar PVs into distribution systems while minimizing energy loss. The RLEO algorithm employs reinforced learning mechanisms to prevent premature convergence of the EO and improve its exploration and exploitation capabilities. The performance of the RLEO algorithm is assessed using standard CEC 2017 benchmark functions and compared with the original EO and other popular algorithms using various statistical criteria. The RLEO algorithm is also applied to determine the optimal size and position of multiple PV units in IEEE 69-bus and 118bus DNs with single and multi-objective optimization problems. Using the developed algorithm, the optimal arrangement of three non-dispatchable PVs results in a slight increase in the percentage reduction of energy loss across various load profiles: 53.0035 % for commercial, 19.6372 % for industrial, and 28.1783 % for residential. In contrast, by employing the optimal configuration of three PV + BES units, the reduction in energy loss percentage experiences a remarkable surge to 68.3466 % for commercial, 68.0917 % for industrial, and 68.1779 % for residential load scenarios using the proposed algorithm. This clearly indicates that the proposed RLEO algorithm significantly surpasses recent optimization methods documented in the literature when it comes to addressing the challenge of optimal allocation for multiple DGs. Furthermore, its applicability extends to more intricate optimization problems.Öğe Program Source-Code Re-Modularization Using a Discretized and Modified Sand Cat Swarm Optimization Algorithm(Mdpi, 2023) Arasteh, Bahman; Seyyedabbasi, Amir; Rasheed, Jawad; Abu-Mahfouz, Adnan M.One of expensive stages of the software lifecycle is its maintenance. Software maintenance will be much simpler if its structural models are available. Software module clustering is thought to be a practical reverse engineering method for building software structural models from source code. The most crucial goals in software module clustering are to minimize connections between created clusters, maximize internal connections within clusters, and maximize clustering quality. It is thought that finding the best software clustering model is an NP-complete task. The key shortcomings of the earlier techniques are their low success rates, low stability, and insufficient modularization quality. In this paper, for effective clustering of software source code, a discretized sand cat swarm optimization (SCSO) algorithm has been proposed. The proposed method takes the dependency graph of the source code and generates the best clusters for it. Ten standard and real-world benchmarks were used to assess the performance of the suggested approach. The outcomes show that the quality of clustering is improved when a discretized SCSO algorithm was used to address the software module clustering issue. The suggested method beats the previous heuristic approaches in terms of modularization quality, convergence speed, and success rate.Öğe A reinforcement learning-based metaheuristic algorithm for solving global optimization problems(Elsevier, 2023) Seyyedabbasi, AmirThe purpose of this study is to utilize reinforcement learning in order to improve the performance of the Sand Cat Swarm Optimization algorithm (SCSO). In this paper, we propose a novel algorithm for the solution of global optimization problems that is called RLSCSO. In this method, metaheuristic algorithm is combined with rein-forcement learning techniques to form a hybrid metaheuristic algorithm. This study aims to provide search agents with the opportunity to perform efficient exploration of the search space in order to find a global optimal solution by using efficient exploration and exploitation to find optimal solutions within a given search space. A comprehensive evaluation of the RLSCSO has been conducted on 20 benchmark functions and 100-digit chal-lenge basic test functions. Additionally, the proposed algorithm is applied to the problem of localizing mobile sensor nodes, which is NP-hard (nondeterministic polynomial time). Several extensive analyses have been conducted in order to determine the effectiveness and efficiency of the proposed algorithm in solving global optimization problems. In terms of cost values, the RLSCSO algorithm provides the optimal solution, along with tradeoffs between exploration and exploitation.Öğe Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems(Springer, 2022) Seyyedabbasi, Amir; Kiani, FarzadThis study proposes a new metaheuristic algorithm called sand cat swarm optimization (SCSO) which mimics the sand cat behavior that tries to survive in nature. These cats are able to detect low frequencies below 2 kHz and also have an incredible ability to dig for prey. The proposed algorithm, inspired by these two features, consists of two main phases (search and attack). This algorithm controls the transitions in the exploration and exploitation phases in a balanced manner and performed well in finding good solutions with fewer parameters and operations. It is carried out by finding the direction and speed of the appropriate movements with the defined adaptive strategy. The SCSO algorithm is tested with 20 well-known along with modern 10 complex test functions of CEC2019 benchmark functions and the obtained results are also compared with famous metaheuristic algorithms. According to the results, the algorithm that found the best solution in 63.3% of the test functions is SCSO. Moreover, the SCSO algorithm is applied to seven challenging engineering design problems such as welded beam design, tension/compression spring design, pressure vessel design, piston lever, speed reducer design, three-bar truss design, and cantilever beam design. The obtained results show that the SCSO performs successfully on convergence rate and in locating all or most of the local/global optima and outperforms other compared methods.Öğe A smart and mechanized agricultural application: From cultivation to harvest(MDPI, 2022) Kiani, Farzad; Randazzo, Giovanni; Yelmen, İlkay; Seyyedabbasi, Amir; Nematzadeh, Sajjad; Anka, Fateme Ayşin; Erenel, FahriFood needs are increasing day by day, and traditional agricultural methods are not responding efficiently. Moreover, considering other important global challenges such as energy sufficiency and migration crises, the need for sustainable agriculture has become essential. For this, an integrated smart and mechanism-application-based model is proposed in this study. This model consists of three stages. In the first phase (cultivation), the proposed model tried to plant crops in the most optimized way by using an automized algorithmic approach (Sand Cat Swarm Optimization algorithm). In the second stage (control and monitoring), the growing processes of the planted crops was tracked and monitored using Internet of Things (IoT) devices. In the third phase (harvesting), a new method (Reverse Ant Colony Optimization), inspired by the ACO algorithm, was proposed for harvesting by autonomous robots. In the proposed model, the most optimal path was analyzed. This model includes maximum profit, maximum quality, efficient use of resources such as human labor and water, the accurate location for planting each crop, the optimal path for autonomous robots, finding the best time to harvest, and consuming the least power. According to the results, the proposed model performs well compared to many well-known methods in the literature.Öğe Solve the Inverse Kinematics of Robot Arms using Sand Cat Swarm Optimization (SCSO) Algorithm(Ieee, 2022) Seyyedabbasi, AmirInverse kinematics of robot arms is one of the optimization problems. The six joints of the Six degrees of freedom PUMA 560 robot arm are considered as an inverse kinematics system in this study. There are many possibilities for joint angles in this problem, making the analysis difficult to determine using deterministic rules. Several metaheuristic algorithms are presented in this paper for solving the inverse kinematics problem of robot arms, including the sand cat swarm optimization algorithm (SCSO). Additionally, we compare the particle swarm optimization (PSO), grey wolf optimization (GWO), and whale optimization algorithm (WOA) optimization algorithms to see which is most efficient. In this study, meta-heuristic algorithms are used to determine the inverse kinematics of the robotic arm, which are essential to tracking a rectangular trajectory in three dimensions. A cost function analysis was conducted in order to further analyze the results. In addition, the results of the comparison of the meta-heuristic algorithms to the inverse kinematics task showed that the SCSO algorithm performed better than the competitors.Öğe WOASCALF: A new hybrid whale optimization algorithm based on sine cosine algorithm and levy flight to solve global optimization problems(Elsevier Ltd, 2022) Seyyedabbasi, AmirIn recent years, researchers have been focused on solving optimization problems in order to determine the global optimum. Increasing the dimension of a problem increases its computational cost and complexity as well. In order to solve these types of problems, metaheuristic algorithms are used. The whale optimization algorithm (WOA) is one of the most well-known algorithms based on whale hunting behavior. In this paper, the WOA algorithm is combined with the Sine Cosine Algorithm (SCA), which is based on the principle of trigonometric sine-cosine. The WOA algorithm has superior performance in the exploration phase in contrast with the exploitation phase, whereas the SCA algorithm has weaknesses in the exploitation phase. The levy flight distribution has been used in the hybrid WOA and SCA algorithm to improve these deficiencies. This study introduced a novel hybrid algorithm named WOASCALF. In this algorithm, the search agents' position updates are based on a hybridization of the WOA, SCA, and levy flight. Each of these metaheuristic algorithms has reasonable performance, however, the Levy distribution caused small and large distance leaps in each phase of the algorithm. Thus, it is possible for the appropriate search agent to move in different directions of the search space. The performance of the WOASCALF has been evaluated by the 23 well-known benchmark functions and three real-world engineering problems. The result analysis demonstrates that the exploration ability of WOASCALF has strong superiority over other compared algorithms.