Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Shah, Muhammad Raza" seçeneğine göre listele

Listeleniyor 1 - 10 / 10
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Anti-Balamuthia mandrillaris and anti-Naegleria fowleri effects of drugs conjugated with various nanostructures
    (Springer, 2023) Siddiqui, Ruqaiyyah; Boghossian, Anania; Alqassim, Saif S.; Kawish, Muhammad; Gul, Jasra; Jabri, Tooba; Shah, Muhammad Raza
    Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Antiamoebic properties of ceftriaxone and zinc-oxide-cyclodextrin-conjugated ceftriaxone
    (MDPI, 2022) Makhlouf, Zinb; Akbar, Noor; Khan, Naveed Ahmed; Shah, Muhammad Raza; Alharbi, Ahmad M.; Alfahemi, Hasan; Siddiqui, Ruqaiyyah
    Acanthamoeba castellanii is a ubiquitous free-living amoeba capable of instigating keratitis and granulomatous amoebic encephalitis in humans. Treatment remains limited and inconsistent. Accordingly, there is a pressing need for novel compounds. Nanotechnology has been gaining attention for enhancing drug delivery and reducing toxicity. Previous work has shown that various antibiotic classes displayed antiamoebic activity. Herein, we employed two antibiotics: ampicillin and ceftriaxone, conjugated with the nanocarrier zinc oxide and beta-cyclodextrin, and tested them against A. castellanii via amoebicidal, amoebistatic, encystment, excystment, cytopathogenicity, and cytotoxicity assays at a concentration of 100 mu g/mL. Notably, zinc oxide beta-cyclodextrin ceftriaxone significantly inhibited A. castellanii growth and cytopathogenicity. Additionally, both zinc oxide beta-cyclodextrin ceftriaxone and ceftriaxone markedly inhibited A. castellanii encystment. Furthermore, all the tested compounds displayed negligible cytotoxicity. However, minimal anti-excystment or amoebicidal effects were observed for the compounds. Accordingly, this novel nanoconjugation should be employed in further studies in hope of discovering novel anti-Acanthamoeba compounds.
  • Küçük Resim Yok
    Öğe
    Antibacterial Properties of Ethacridine Lactate and Sulfmethoxazole Loaded Functionalized Graphene Oxide Nanocomposites
    (Mdpi, 2023) Jabri, Tooba; Khan, Naveed Ahmed; Makhlouf, Zinb; Akbar, Noor; Gul, Jasra; Shah, Muhammad Raza; Siddiqui, Ruqaiyyah
    The emergence of drug-resistant bacterial strains that reduce the effectiveness of antimicrobial agents has become a major ongoing health concern in recent years. It is therefore necessary to find new antibacterials with broad-spectrum activity against both Gram-positive and Gram-negative bacteria, and/or to use nanotechnology to boost the potency of already available medications. In this research, we examined the antibacterial efficacy of sulfamethoxazole and ethacridine lactate loaded two-dimensional glucosamine functionalized graphene-based nanocarriers against a range of bacterial isolates. Graphene oxide was first functionalized with glucosamine, which as a carbohydrate moiety can render hydrophilic and biocompatible characters to the GO surface, and subsequently loaded with ethacridine lactate and sulfamethoxazole. The resulting nanoformulations had distinct, controllable physiochemical properties. By analyzing the formulation using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (PXRD), a thermogravimetric analysis (TGA), zetasizer, and a morphological analysis using Scanning Electron Microscopy and Atomic Force Microscopy, researchers were able to confirm the synthesis of nanocarriers. Both nanoformulations were tested against Gram-negative bacteria, including Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica, as well as Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, and Streptococcus pneumoniae. Importantly, ethacridine lactate and its nanoformulations exhibited significant antibacterial properties against all bacteria tested in this study. When tested for minimum inhibitory concentration (MIC), the results were remarkable and revealed that ethacridine lactate presented MIC90 at 9.7 mu g/mL against S. enteric, and MIC90 at 6.2 mu g/mL against B. cereus. Notably, ethacridine lactate and its nanoformulations showed limited toxicity effects against human cells using lactate dehydrogenase assays. Overall, the results revealed that ethacridine lactate and its nanoformulations possess antibacterial activities against various Gram-negative and Gram-positive bacteria and that nanotechnology can be employed for the targeted delivery of effective drugs without harming the host tissue.
  • Küçük Resim Yok
    Öğe
    Azole and 5-nitroimidazole based nanoformulations are potential antiamoebic drug candidates against brain-eating amoebae
    (Oxford Univ Press, 2023) Akbar, Noor; Hussain, Kashif; Khalid, Maria; Siddiqui, Ruqaiyyah; Shah, Muhammad Raza; Khan, Naveed Ahmed
    Aim Herein, the anti-parasitic activity of azoles (fluconazole and itraconazole) and 5-nitroimdazole (metronidazole) against the brain-eating amoebae: Naegleria fowleri and Balamuthia mandrillaris was elucidated. Methods and results Azoles and 5-nitroimidazole based nanoformulations were synthesized and characterized using a UV-visible spectrophotometer, atomic force microscopy, and fourier transform infrared spectroscopy. H-1-NMR, EI-MS, and ESI-MS were performed to determine their molecular mass and elucidate their structures. Their size, zeta potential, size distribution, and polydispersity index (PDI) were assessed. Amoebicidal assays revealed that all the drugs and their nanoformulations, (except itraconazole) presented significant anti-amoebic effects against B. mandrillaris, while all the treatments indicated notable amoebicidal properties against N. fowleri. Amoebicidal effects were radically enhanced upon conjugating the drugs with nanoparticles. The IC50 values for KM-38-AgNPs-F, KM-20-AgNPs-M, and KM-IF were 65.09, 91.27, and 72.19 mu g.mL-1, respectively, against B. mandrillaris. Whereas against N. fowleri, the IC50 values were: 71.85, 73.95, and 63.01 mu g.mL-1, respectively. Additionally, nanoformulations significantly reduced N. fowleri-mediated host cell death, while nanoformulations along with fluconazole and metronidazole considerably reduced Balamuthia-mediated human cell damage. Finally, all the tested drugs and their nanoformulations revealed limited cytotoxic activity against human cerebral microvascular endothelial cell (HBEC-5i) cells. Conclusion These compounds should be developed into novel chemotherapeutic options for use against these distressing infections due to free-living amoebae, as currently there are no effective treatments.
  • Küçük Resim Yok
    Öğe
    Cinnamic acid and lactobionic acid based nanoformulations as a potential antiamoebic therapeutics
    (Academic Press Inc Elsevier Science, 2023) Akbar, Noor; Kawish, Muhammad; Jabri, Tooba; Khan, Naveed Ahmed; Shah, Muhammad Raza; Siddiqui, Ruqaiyyah
    Acanthamoeba castellanii causes granulomatous amoebic encephalitis, an uncommon but severe brain infection and sight-threatening Acanthamoeba keratitis. Most of the currently used anti-amoebic treatments are not always effective, due to persistence of the cyst stage, and recurrence can occur. Here in this study we synthesize cin-namic acid and lactobionic acid-based magnetic nanoparticles (MNPs) using co-precipitation technique. These nanoformulations were characterized by Fourier transform infrared spectroscopy and Atomic form microscopy. The drugs alone (Hesperidin, Curcumin and Amphotericin B), magnetic NPs alone, and drug-loaded nano -for-mulations were evaluated at a concentration of 100 mu g/mL for antiamoebic activity against a clinical isolate of A. castellanii. Amoebicidal assays revealed that drugs and conjugation of drugs and NPs further enhanced amoebicidal effects of drug-loaded nanoformulations. Drugs and drug-loaded nanoformulations inhibited both encystation and excystation of amoebae. In addition, drugs and drug-loaded nanoformulations inhibited parasite binding capability to the host cells. Neither drugs nor drug-loaded nanoformulations showed cytotoxic effects against host cells and considerably reduced parasite-mediated host cell death. Overall, these findings imply that conjugation of medically approved drugs with MNPs produce potent anti-Acanthamoebic effects, which could eventually lead to the development of therapeutic medications.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline
    (Springer Science and Business Media Deutschland GmbH, 2024) Jabri, Tooba; Daalah, Meshal; Alawfi, Bader S.; Gul, Jasra; Ahmed, Usman; Shah, Muhammad Raza; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Ying, Tan Yee; Tong, Yeo Jia; Anwar, Ayaz
    Acanthamoeba castellanii is the causative pathogen of a severe eye infection, known as Acanthamoeba keratitis and a life-threatening brain infection, named granulomatous amoebic encephalitis. Current treatments are problematic and costly and exhibit limited efficacy against Acanthamoeba parasite, especially the cyst stage. In parallel to drug discovery and drug repurposing efforts, drug modification is also an important approach to tackle infections, especially against neglected parasites such as free-living amoebae: Acanthamoeba. In this study, we determined whether modifying pentamidine and doxycycline through chitosan-functionalized graphene oxide loading enhances their anti-amoebic effects. Various concentrations of doxycycline, pentamidine, graphene oxide, chitosan-functionalized graphene oxide, and chitosan-functionalized graphene oxide loaded with doxycycline and pentamidine were investigated for amoebicidal effects against pathogenic A. castellanii belonging to the T4 genotype. Lactate dehydrogenase assays were performed to determine toxic effects of these various drugs and nanoconjugates against human cells. The findings revealed that chitosan-functionalized graphene oxide loaded with doxycycline demonstrated potent amoebicidal effects. Nanomaterials significantly (p < 0.05) inhibited excystation and encystation of A. castellanii without exhibiting toxic effects against human cells in a concentration-dependent manner, as compared with other formulations. These results indicate that drug modifications coupled with nanotechnology may be a viable avenue in the rationale development of effective therapies against Acanthamoeba infections. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
  • Küçük Resim Yok
    Öğe
    Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline
    (SPRINGER, 28.11.2024) Jabri, Tooba; Daalah, Meshal; Alawfi, Bader S.; Gul, Jasra; Ahmed, Usman; Shah, Muhammad Raza; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Ying, Tan Yee; Tong, Yeo Jia; Anwar, Ayaz
    Acanthamoeba castellanii is the causative pathogen of a severe eye infection, known as Acanthamoeba keratitis and a life-threatening brain infection, named granulomatous amoebic encephalitis. Current treatments are problematic and costly and exhibit limited efficacy against Acanthamoeba parasite, especially the cyst stage. In parallel to drug discovery and drug repurposing efforts, drug modification is also an important approach to tackle infections, especially against neglected parasites such as free-living amoebae: Acanthamoeba. In this study, we determined whether modifying pentamidine and doxycycline through chitosan-functionalized graphene oxide loading enhances their anti-amoebic effects. Various concentrations of doxycycline, pentamidine, graphene oxide, chitosan-functionalized graphene oxide, and chitosan-functionalized graphene oxide loaded with doxycycline and pentamidine were investigated for amoebicidal effects against pathogenic A. castellanii belonging to the T4 genotype. Lactate dehydrogenase assays were performed to determine toxic effects of these various drugs and nanoconjugates against human cells. The findings revealed that chitosan-functionalized graphene oxide loaded with doxycycline demonstrated potent amoebicidal effects. Nanomaterials significantly (p < 0.05) inhibited excystation and encystation of A. castellanii without exhibiting toxic effects against human cells in a concentration-dependent manner, as compared with other formulations. These results indicate that drug modifications coupled with nanotechnology may be a viable avenue in the rationale development of effective therapies against Acanthamoeba infections.
  • Küçük Resim Yok
    Öğe
    Nanocarrier Drug Conjugates Exhibit Potent Anti-Naegleria fowleri and Anti-Balamuthia mandrillaris Properties
    (Mdpi, 2023) Siddiqui, Ruqaiyyah; Boghossian, Anania; Kawish, Muhammad; Jabri, Tooba; Shah, Muhammad Raza; Anuar, Tengku Shahrul; Al-Shareef, Zainab
    Given the opportunity and access, pathogenic protists (Balamuthia mandrillaris and Naegleria fowleri) can produce fatal infections involving the central nervous system. In the absence of effective treatments, there is a need to either develop new antimicrobials or enhance the efficacy of existing compounds. Nanocarriers as drug delivery systems are gaining increasing attention in the treatment of parasitic infections. In this study, novel nanocarriers conjugated with amphotericin B and curcumin were evaluated for anti-amoebic efficacy against B. mandrillaris and N. fowleri. The results showed that nanocarrier conjugated amphotericin B exhibited enhanced cidal properties against both amoebae tested compared with the drug alone. Similarly, nanocarrier conjugated curcumin exhibited up to 75% cidal effects versus approx. 50% cidal effects for curcumin alone. Cytopathogenicity assays revealed that the pre-treatment of both parasites with nanoformulated-drugs reduced parasite-mediated host cellular death compared with the drugs alone. Importantly, the cytotoxic effects of amphotericin B on human cells alone were reduced when conjugated with nanocarriers. These are promising findings and further suggest the need to explore nanocarriers as a means to deliver medicine against parasitic infections.
  • Küçük Resim Yok
    Öğe
    Self-assembled micelles loaded with itraconazole as anti-Acanthamoeba nano-formulation
    (Springer, 2024) Rao, Komal; Abdullah, Muhammad; Ahmed, Usman; Wehelie, Hashi Isse; Shah, Muhammad Raza; Siddiqui, Ruqaiyyah; Khan, Naveed A.
    Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB(2) miktoarms [A = hydrophobic poly(-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and Cu-I catalyzed azide-alkyne cycloaddition. Characterization by H-1 and C-13 NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB(2) miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG(2)) and blank micelles (PCL-PEG(2)) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG(2)) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG(2)) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 mu g/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG(2) and ITZ-PCL-PEG(2) inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG(2) revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG(2) micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.
  • Küçük Resim Yok
    Öğe
    The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens
    (Springer science and business media deutschland GmbH, 2024) Siddiqui, Ruqaiyyah; Khatoon, Bushra; Kawish, Muhammad; Sajeev, Sreedevi; Faizi, Shaheen; Shah, Muhammad Raza; Alharbi, Ahmad M.; Khan, Naveed Ahmed
    Free-living amoebae infections are on the rise while the prognosis remains poor. Current therapies are ineffective, and there is a need for novel effective drugs which can target Naegleria, Balamuthia, and Acanthamoeba species. In this study, we determined the effects of a nano-formulation based on flavonoid patuletin-loaded gallic acid functionalized zinc oxide nanoparticles (PA-GA-ZnO) against Acanthamoeba, Balamuthia, and Naegleria trophozoites. Characterization of the nano-formulation was accomplished utilizing analytical tools, namely Fourier-transform infrared spectroscopy, drug entrapment efficiency, polydispersity index, dimensions, and surface morphologies. Anti-amoebic effects were investigated using amoebicidal assay, cytopathogenicity assay, and cytotoxicity of the nano-formulation on human cells. The findings revealed that nano-formulation (PA-GA-ZnO) displayed significant anti-amoebic properties and augmented effects of patuletin alone against all three brain-eating amoebae. When tested alone, patuletin nano-formulations showed minimal toxicity effects against human cells. In summary, the nano-formulations evaluated herein depicts efficacy versus Acanthamoeba, Balamuthia, and Naegleria. Nonetheless, future studies are needed to comprehend the molecular mechanisms of patuletin nano-formulations versus free-living amoebae pathogens, in addition to animal studies to determine their potential value for clinical applications.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim