Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sohrabi, Mohammad Karim" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Resource allocation in 5G cloud-RAN using deep reinforcement learning algorithms: A review
    (Wiley, 2024) Khani, Mohsen; Jamali, Shahram; Sohrabi, Mohammad Karim; Sadr, Mohammad Mohsen; Ghaffari, Ali
    This paper reviews recent research on resource allocation in 5G cloud-based radio access networks (C-RAN) using deep reinforcement learning (DRL) algorithms. It explores the potential of DRL for learning complex decision-making policies without human intervention. The paper first introduces the C-RAN architecture and resource allocation concepts, followed by an overview of DRL algorithms applied to C-RAN. It discusses the challenges and potential solutions in applying DRL to C-RAN resource allocation, including scalability, convergence, and fairness. The review concludes by highlighting open research directions for future investigation. By providing insights into the state-of-the-art techniques for resource allocation in 5G C-RAN using DRL, this paper emphasizes their potential impact on advancing 5G network technology.

| İstinye Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İstinye Üniversitesi, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim