Yazar "Yuce, Meral" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Optimization of curcumin loaded niosomes for drug delivery applications(Elsevier B.V., 2022) Esmaeili Rad, Monireh; Egil, Abdurrahim Can; Ozaydin Ince, Gozde; Yuce, Meral; Zarrabi, AliControlled drug delivery is an important and challenging issue in pharmacology. The aim is to improve efficacy and reduce the side effects of drugs. Nanotechnology suggests applying various nanoparticles as carriers to overcome drug delivery limitations. The current study introduces an optimum formulation of niosomes to carry and deliver curcumin (CUR) as a hydrophobic drug to cancerous cells. In spite of numerous pharmacological properties of this natural polyphenolic compound, including anti-microbial, antioxidant, and anti-inflammatory effects, it suffers from poor stability and solubility. This work studies the optimum formulation for CUR-loaded niosome and investigates its stability based on hydrodynamic size and zeta-potential measurements. The optimum blank noisome, formulated according to a three-level Box–Behnken design, was used to load CUR as an anticancer drug. The fabricated niosomes (blank/loaded) were characterized by dynamic light scattering, Fourier transforms infrared spectroscopy and scanning electron microscopy. Prepared particles showed stability at 4 °C for up to two months. In addition, particles were durable against temperature changes from 5° to 40°C. Drug-loaded niosomes reached 99.8% drug entrapment efficiency and up to 68.33% loading capacity. Sustained-release behaviour was observed in CUR-loaded niosomes up to 25.49 ± 0.70% of CUR during 336 h. Based on cytotoxicity studies, blank niosome showed no significant toxicity effect on cells at high concentrations and after 72 h, confirming cytocompatibility of the particles. CUR-loaded niosomes had dose-dependent toxicity against cancerous cells. The concentration of 200 µg/ml of the drug-loaded carrier, containing 66.75 µg CUR, showed an IC50 effect after 48 h of exposure to cellsÖğe Repurposing Fc gamma receptor I (Fc?RI, CD64) for site-oriented monoclonal antibody capture: A proof-of-concept study for real-time detection of tumor necrosis factor-alpha (TNF -?)?(Cell Press, 2023) Capkin, Eda; Kutlu, Asli; Yuce, MeralThe controlled orientation of biomolecules on the sensor surface is crucial for achieving high sensitivity and accurate detection of target molecules in biosensing. Fc gamma RI is an immune cell surface receptor for recognizing IgG-coated targets, such as opsonized pathogens or immune complexes. It plays a crucial role in T cell activation and internalization of the cargos, leading downstream signaling cascades. In this study, we repurposed the Fc gamma RI as an analytical ligand molecule for site-oriented ADA capture, a monoclonal antibody-based biosimilar drug, on a plasmonic sensor surface and demonstrated the real-time detection of the corresponding analyte molecule, TNF-alpha. The study encompasses the analysis of comparative ligand behaviors on the surface, biosensor kinetics, concentration-dependent studies, and sensor specificity assays. The findings of this study suggest that Fc gamma RI has a significant potential to serve as a universal ligand molecule for site-specific monoclonal antibody capture, and it can be used for biosensing studies, as it represents low nanomolar range affinity and excellent selectivity towards the target. However, there is still room for improvement in the surface stability and sensing response, and further studies are needed to reveal its performance on the monoclonal antibodies with various antigen binding sites and glycoforms.