A Review on Medical Image Applications Based on Deep Learning Techniques
dc.authorid | Indrit Myderrizi / 0000-0002-2112-7911 | |
dc.authorscopusid | Indrit Myderrizi / 58578388200 | |
dc.authorwosid | Indrit Myderrizi / A-1247-2011 | |
dc.contributor.author | Abdulwahhab, Ali H | |
dc.contributor.author | Mahmood, Noof T. | |
dc.contributor.author | Mohammed, Ali Abdulwahhab | |
dc.contributor.author | Myderrizi, Indrit | |
dc.contributor.author | Al-Jumaili, Mustafa Hamid | |
dc.date.accessioned | 2025-04-18T07:53:51Z | |
dc.date.available | 2025-04-18T07:53:51Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | |
dc.description.abstract | The integration of deep learning in medical image analysis is a transformative leap in healthcare, impacting diagnosis and treatment significantly. This scholarly review explores deep learning’s applications, revealing limitations in traditional methods while showcasing its potential. It delves into tasks like segmentation, classification, and enhancement, highlighting the pivotal roles of Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs). Specific applications, like brain tumor segmentation and COVID-19 diagnosis, are deeply analyzed using datasets like NIH Clinical Center’s Chest X-ray dataset and BraTS dataset, proving invaluable for model training. Emphasizing high-quality datasets, especially in chest X-rays and cancer imaging, the article underscores their relevance in diverse medical imaging applications. Additionally, it stresses the managerial implications in healthcare organizations, emphasizing data quality and collaborative partnerships between medical practitioners and data scientists. This review article illuminates deep learning’s expansive potential in medical image analysis, a catalyst for advancing healthcare diagnostics and treatments. © 2024 by the authors. | |
dc.identifier.citation | Abdulwahhab, A. H., Mahmood, N. T., Mohammed, A. A., Myderrizi, I., & Al-Jumaili, M. H. (2024). A review on medical image applications based on deep learning techniques. J. Image Graph., 12(3), 215. | |
dc.identifier.doi | 10.18178/JOIG.12.3.215-227 | |
dc.identifier.endpage | 227 | |
dc.identifier.issn | 23013699 | |
dc.identifier.issue | 3 | |
dc.identifier.scopus | 2-s2.0-85201556291 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 215 | |
dc.identifier.uri | http://dx.doi.org/10.18178/JOIG.12.3.215-227 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6500 | |
dc.identifier.volume | 12 | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Myderrizi, Indrit | |
dc.institutionauthorid | Indrit Myderrizi / 0000-0002-2112-7911 | |
dc.language.iso | en | |
dc.publisher | University of Portsmouth | |
dc.relation.ispartof | Journal of Image and Graphics(United Kingdom) | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Deep Learning | |
dc.subject | High-Quality Medical İmage Datasets | |
dc.subject | Machine Learning | |
dc.subject | Medical İmage Analysis | |
dc.title | A Review on Medical Image Applications Based on Deep Learning Techniques | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: