A Linguistically Interpretable Deep Fuzzy Classification System With Feature Transformation and Reconstruction
dc.authorscopusid | Witold Pedrycz / 58861905800 | |
dc.authorwosid | Witold Pedrycz / HJZ-2779-2023 | |
dc.contributor.author | Zang, Zhen Sheng | |
dc.contributor.author | Yin, Rui | |
dc.contributor.author | Lu, Wei | |
dc.contributor.author | Pedrycz, Witold | |
dc.contributor.author | Zhang, Li-Yong | |
dc.date.accessioned | 2025-04-18T08:29:25Z | |
dc.date.available | 2025-04-18T08:29:25Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | Classification tasks involving tabular data often require a balance between exceptional performance and heightened interpretability. To address this challenge, we propose a linguistically interpretable deep fuzzy classification system called FFT-FFR-RBFC. The system employs a fuzzy feature transformation (FFT) unit, formed by employing a stacked architecture of multiple Takagi-Sugeno-Kang fuzzy models with nonlinear conclusions, to distill high-level fuzzy features from the input data, a rule-based fuzzy classifier unit to perform classification using these features, while a fuzzy feature reconstruction unit in tandem with the FFT to enhance the system's linguistic interpretability by remapping the high-level features back to their original space. The proposed approach is optimized by minimizing a composite loss function that balances classification and reconstruction losses, ensuring a harmonious interplay between performance and interpretability. Comprehensive evaluation across 20 diverse datasets demonstrates that the system's is exceptionally promising, particularly for high-dimensional or large-scale tabular data classification tasks, achieving superior classification performance while maintaining a high degree of interpretability. © 1993-2012 IEEE. | |
dc.identifier.citation | Zang, Z. S., Yin, R., Lu, W., Pedrycz, W., & Zhang, L. Y. (2024). A Linguistically Interpretable Deep Fuzzy Classification System with Feature Transformation and Reconstruction. IEEE Transactions on Fuzzy Systems. | |
dc.identifier.doi | 10.1109/TFUZZ.2024.3394897 | |
dc.identifier.endpage | 4311 | |
dc.identifier.issn | 10636706 | |
dc.identifier.issue | 8 | |
dc.identifier.scopus | 2-s2.0-85192176238 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 4297 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TFUZZ.2024.3394897 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6575 | |
dc.identifier.volume | 32 | |
dc.identifier.wos | WOS:001291157800014 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | Web of Science | |
dc.institutionauthor | Pedrycz, Witold | |
dc.institutionauthorid | Witold Pedrycz / 0000-0002-9335-9930 | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | IEEE Transactions on Fuzzy Systems | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Deep Fuzzy Classification System | |
dc.subject | Feature Transformation and Reconstruction | |
dc.subject | Linguistic İnterpretability | |
dc.subject | Takagi-Sugeno-Kang (TSK)Model | |
dc.title | A Linguistically Interpretable Deep Fuzzy Classification System With Feature Transformation and Reconstruction | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: