Aad, G.Abbott, B.Abeling, K.Abicht, N. J.Abidi, S. H.Aboulhorma, A.Çetin, Serkant Ali2024-05-192024-05-1920230370-26931873-2445https://doi.org10.1016/j.physletb.2023.138154https://hdl.handle.net/20.500.12713/5729Parton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb-1 of Pb+Pb data and 260 pb-1 of pp data, both at root sNN = 5.02 TeV, with the ATLAS detector. The process pp -> gamma +jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.eninfo:eu-repo/semantics/openAccess[No Keywords]Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLASArticle846WOS:0011252583000012-s2.0-85172322734N/A10.1016/j.physletb.2023.138154Q1