Göçgün, Yasin2021-06-082021-06-082021Göçgün, Y. (2021). Performance comparison of approximate dynamic programming techniques for dynamic stochastic scheduling. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 11(2), 178-185.https://doi.org/10.11121/IJOCTA.01.2021.00987https://hdl.handle.net/20.500.12713/1786This paper focuses on the performance comparison of several approximate dynamic programming (ADP) techniques. In particular, we evaluate three ADP techniques through a class of dynamic stochastic scheduling problems: Lagrangian-based ADP, linear programming-based ADP, and direct search-based ADP. We uniquely implement the direct search-based ADP through basis functions that differ from those used in the relevant literature. The class of scheduling problems has the property that jobs arriving dynamically and stochastically must be scheduled to days in advance. Numerical results reveal that the direct search-based ADP outperforms others in the majority of problem sets generated.eninfo:eu-repo/semantics/openAccessApproximate Dynamic ProgrammingDynamic Stochastic SchedulingMarkov Decision ProcessesPerformance comparison of approximate dynamic programming techniques for dynamic stochastic schedulingArticle1121781852-s2.0-8510696507510.11121/IJOCTA.01.2021.00987N/A491903