Van Hoa, NgoAllahviranloo, TofighPedrycz, Witold2024-05-192024-05-1920240165-01141872-6801https://doi.org10.1016/j.fss.2024.108895https://hdl.handle.net/20.500.12713/5634This paper introduces some recent approaches to the fuzzy fractional Abel integral equations with respect to another function, which is called the fuzzy fractional Abel k-integral equations. The problem proposed here allows for the interpolation of different types of fuzzy classical fractional Abel integral equations, and the solvability of each type of integral equation is also discussed. Additionally, a new approach to the linear fuzzy fractional differential equations in the space of generalized fuzzy functions is introduced. Unlike previous approaches with gH-differentiability, this approach avoids making any prior assumptions about the solution's monotonic behavior during the solving process. It also overcomes the problem of multiple solutions for fuzzy fractional differential equations. To demonstrate the benefits of this approach, two initial value problems of linear fuzzy differential equations are compared using two different concepts of fractional derivatives: the Caputo fractional gH-differentiability and the Caputo fractional derivative in the generalized fuzzy space. Furthermore, some applications are provided in a viscoelastic material model and a population growth with harvesting model.eninfo:eu-repo/semantics/closedAccessThe Fuzzy Fractional Abel K-Integral EquationsThe Linear Fuzzy Fractional Differential EquationsThe Generalized Fuzzy SpaceLaplace-Like TransformThe Pade ApproximationA new approach to the fractional Abel k-integral equations and linear fractional differential equations in a fuzzy environmentArticle481WOS:0011889912000012-s2.0-85185348959N/A10.1016/j.fss.2024.108895Q1