Soroush, S.Allahviranloo, T.Azari, H.Rostamy-Malkhalifeh, M.2024-05-192024-05-1920242238-36031807-0302https://doi.org10.1007/s40314-024-02645-2https://hdl.handle.net/20.500.12713/5149We are going to explain the fuzzy Adams-Bashforth methods for solving fuzzy differential equations focusing on the concept of g-differentiability. Considering the analysis of normal, convex, upper semicontinuous, compactly supported fuzzy sets in R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>n$$\end{document} and also convergence of the methods, the general expression of solutions is obtained. Finally, we demonstrate the importance of our method with some illustrative examples. These examples are provided aiming to solve the fuzzy differential equations.eninfo:eu-repo/semantics/openAccessFuzzy Differential EquationGeneralized DifferentiabilityAdams-Bashforth MethodFuzzy Difference EquationsGeneralized fuzzy difference method for solving fuzzy initial value problemArticle433WOS:0011951038000012-s2.0-85188859468N/A10.1007/s40314-024-02645-2Q2