• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robust bi-objective mathematical model for disaster rescue units allocation and scheduling with learning effect

Thumbnail

View/Open

Tam Metin / Full text (1.825Mb)

Date

2020

Author

Tirkolaee, Erfan Babaee
Aydin, Nadi Serhan
Ranjbar-Bourani, Mehdi
Weber, Gerhard Wilhelm

Metadata

Show full item record

Citation

Tirkolaee, E. B., Aydın, N. S., Ranjbar-Bourani, M., & Weber, G. W. (2020). A robust bi-objective mathematical model for disaster rescue units allocation and scheduling with learning effect. Computers & Industrial Engineering, 106790.

Abstract

This paper proposes a novel bi-objective mixed-integer linear programming (MILP) model for allocating and scheduling disaster rescue units considering the learning effect. When a natural phenomenon (e.g., earthquake or flood) occurs, the presented decision support model is expected to help decision-makers of emergency relief centers to provide efficient planning for rescue units to minimize the total weighted completion time of rescue operations, as well as the total delay in rescue operations. The problem has some features in common with unrelated parallel machine scheduling (UPMS) problem and traveling salesman problem (TSP). To deal with the inherent uncertainty and bi-objective nature of the problem, an uncertainty-set based robust optimization technique and multi-choice goal programming (MCGP) with utility functions are applied. To demonstrate the applicability of the proposed model, a real case study in Mazandaran province in Iran is presented. The computational results confirm the high complexity of the problem and the significant impacts of the uncertainty on the solution. Moreover, the analytical results provide useful insights to decision-makers for disastrous situations.

Source

Computers and Industrial Engineering

Volume

149

URI

https://doi.org/10.1016/j.cie.2020.106790
https://hdl.handle.net/20.500.12713/1123

Collections

  • Endüstri Mühendisliği Bölümü Makale Koleksiyonu [63]
  • Scopus İndeksli Yayınlar Koleksiyonu [1920]
  • WoS İndeksli Yayınlar Koleksiyonu [2023]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || İstinye University || OAI-PMH ||

İstinye University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstinye University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.