• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • PubMed İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • PubMed İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preparation and characterization of palladium derivate-loaded micelle formulation in vitro as an innovative therapy option against non-small cell lung cancer cells

Thumbnail

View/Open

Tam Metin / Full Text (1.858Mb)

Date

2021

Author

Erkisa, Merve
Ari, Ferda
Buyukkoroglu, Gulay
Senel, Bedriye
Yilmaz, Veysel Turan
Ulukaya, Engin

Metadata

Show full item record

Citation

Erkisa, M., Arı, F., Büyükköroğlu, G., Şenel, B., Yılmaz, V. T., & Ulukaya, E. (2021). Preparation and characterization of palladium derivate-loaded micelle formulation in vitro as an innovative therapy option against non-small cell lung cancer cells. Chemistry & biodiversity, 10.1002/cbdv.202100402. Advance online publication. https://doi.org/10.1002/cbdv.202100402

Abstract

Nanoparticles have been used in cancer treatments to target tumor and reduce side effects. In this study, we aimed to increase the effectiveness of palladium(II) complex [PdCl(terpy)](sac)·2H2O, which previously showed anticancer potential, by preparing the nanoparticle formulation. An inhalable micellar dispersion containing a palladium(II) complex (PdNP) was prepared and its physicochemical characteristics were evaluated using in vitro tests. Morphology, size and surface charges of particle and loading/encapsulation efficiency of PdNP were analyzed by scanning electron microscopy, zeta sizer and inductively coupled plasma mass spectrometry while aerosol properties of PdNP were measured by the next generation impactor. A549 and H1299 non-small lung cancer cell types were used for cytotoxicity using SRB and ATP assays. Fluorescent staining and M30 antigen assay were carried out for cell death evaluation. Apoptosis was confirmed by flow cytometry analyses. SEM, particle size, and zeta potential results showed the particles have inhalable properties. The amount of the palladium(II) complex loaded into the particles was quantified which indicated high encapsulation efficiencies (97%). The micellar dispersion expected to reach the alveolar region and the brachial region was determined 35% and 47%, respectively. PdNP showed an anti-growth effect by increasing reactive oxygen species that is followed by the induction of mitochondria-dependent apoptosis that is evidenced by pyknotic nuclei and M30 antigen level increments and disruption of polarization of membrane in mitochondria (Δψm). The results show that PdNP might be a promising inhalable novel complex to be used in non-small cell lung cancer, which warrants animal studies in further.

Source

Chemistry & Biodiversity

URI

https://doi.org/10.1002/cbdv.202100402
https://hdl.handle.net/20.500.12713/2006

Collections

  • Moleküler Kanser Uygulama ve Araştırma Merkezi Makale Koleksiyonu [23]
  • PubMed İndeksli Yayınlar Koleksiyonu [1161]
  • Scopus İndeksli Yayınlar Koleksiyonu [1920]
  • Temel Tıp Bilimleri Bölümü Makale Koleksiyonu [235]
  • WoS İndeksli Yayınlar Koleksiyonu [2023]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || İstinye University || OAI-PMH ||

İstinye University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstinye University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.