• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of Covid-19 infected pregnant women sera using laboratory indexes, vibrational spectroscopy, and machine learning classifications

Thumbnail

View/Open

Tam Metin / Full Text (1.825Mb)

Date

2022

Author

Guleken, Zozan
Jakubczyk, Paweł
Paja, W.
Krzysztof, Pancerz
Bulut, Huri
Öten, Esra
Depciuch, Joanna
Tarhan, Nevzat K.

Metadata

Show full item record

Citation

Guleken, Z., Jakubczyk, P., Wiesław, P., Krzysztof, P., Bulut, H., Öten, E., ... & Tarhan, N. (2021). Characterization of Covid-19 infected pregnant women sera using laboratory indexes, vibrational spectroscopy, and machine learning classifications. Talanta, 122916.

Abstract

Herein, we show differences in blood serum of asymptomatic and symptomatic pregnant women infected with COVID-19 and correlate them with laboratory indexes, ATR FTIR and multivariate machine learning methods. We collected the sera of COVID-19 diagnosed pregnant women, in the second trimester (n = 12), third-trimester (n = 7), and second-trimester with severe symptoms (n = 7) compared to the healthy pregnant (n = 11) women, which makes a total of 37 participants. To assign the accuracy of FTIR spectra regions where peak shifts occurred, the Random Forest algorithm, traditional C5.0 single decision tree algorithm and deep neural network approach were used. We verified the correspondence between the FTIR results and the laboratory indexes such as: the count of peripheral blood cells, biochemical parameters, and coagulation indicators of pregnant women. CH2 scissoring, amide II, amide I vibrations could be used to differentiate the groups. The accuracy calculated by machine learning methods was higher than 90%. We also developed a method based on the dynamics of the absorbance spectra allowing to determine the differences between the spectra of healthy and COVID-19 patients. Laboratory indexes of biochemical parameters associated with COVID-19 validate changes in the total amount of proteins, albumin and lipase.

Source

Talanta

Volume

237

URI

https://doi.org/10.1016/j.talanta.2021.122916
https://hdl.handle.net/20.500.12713/2158

Collections

  • Makale Koleksiyonu [225]
  • PubMed İndeksli Yayınlar Koleksiyonu [998]
  • Scopus İndeksli Yayınlar Koleksiyonu [1549]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || İstinye University || OAI-PMH ||

İstinye University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstinye University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.