• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heavy metal oxide (HMO) glasses as an effective member of glass shield family: A comprehensive characterization on gamma ray shielding properties of various structures

Thumbnail

View/Open

Tam Metin / Full Text (5.155Mb)

Date

2022

Author

Tekin, H.O.
Susoy, Gulfem
Issa, Shams A.M.
Ene, Antoaneta
ALMisned, Ghada
Rammah, Y.S.
Ali Fatema, T.
Algethami, Merfat
Zakaly, Hesham M.H.

Metadata

Show full item record

Citation

Tekin, H. O., Susoy, G., Issa, S. A., Ene, A., ALMisned, G., Rammah, Y. S., ... & Zakaly, H. M. (2022). Heavy metal oxide (HMO) glasses as an effective member of glass shield family: A comprehensive characterization on gamma ray shielding properties of various structures. Journal of Materials Research and Technology, 18, 231-244.

Abstract

Using advanced Monte Carlo simulation techniques and theoretical methodologies, a thorough investigation on the gamma-ray shielding properties of several heavy metal oxide glasses were performed. The general-purpose Monte Carlo code MCNPX (version 2.7.0) was used to simulate gamma-ray transmission to determine fundamental attenuation coefficients. The acquired findings were compared to Phy-X/PSD to confirm that the outputs were consistent. Additionally, other gamma-ray shielding parameters were computed and studied throughout a broad photon energy range of 0.015 MeV–15 MeV. From A to F glass samples, a sharp density increase from 5.99 g/cm3 to 8.9 g/cm3 was found. As a result, the F sample was found to have the highest linear attenuation coefficients. Our results indicate that increasing the amount of Bi reinforcement improved the material's overall gamma-ray attenuation properties. The F sample with the highest Bi reinforcement in its glass structure was subsequently shown to have superior gamma-ray shielding characteristics. Finally, we compared the F sample's half-value layer values to those of other commercial glass shields, various concretes, and other glass shields investigated in the literature. As a consequence of the benchmarking procedure, it has been determined that the F sample has better shielding capabilities than other shielding materials. It can be concluded that heavy metal oxide glasses offer apparent benefits in terms of more efficiently attenuating incoming gamma-rays. Additionally, it can be concluded that applying high Bi to heavy metal oxide glasses is a beneficial strategy for improving the gamma-ray attenuation capabilities of heavy metal oxide glasses. © 2022 The Author(s)

Source

Journal of Materials Research and Technology

Volume

18

URI

https://doi.org/10.1016/j.jmrt.2022.02.074
https://hdl.handle.net/20.500.12713/2633

Collections

  • Makale Koleksiyonu [50]
  • Scopus İndeksli Yayınlar Koleksiyonu [1513]
  • WoS İndeksli Yayınlar Koleksiyonu [1591]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || İstinye University || OAI-PMH ||

İstinye University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstinye University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.