• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms

Thumbnail

View/Open

Tam Metin/ Full Text (3.942Mb)

Date

2020

Author

Tirkolaee, Erfan Babaee
Goli A.
Faridnia A.
Soltani M.
Weber G.-W.

Metadata

Show full item record

Citation

Tirkolaee, E. B., Goli, A., Faridnia, A., Soltani, M., & Weber, G. W. (2020). Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. Journal of Cleaner Production, 122927.

Abstract

Cross-docking practice plays an important role in improving the efficiency of distribution networks, especially, for optimizing supply chain operations. Moreover, transportation route planning, controlling the Greenhouse Gas (GHG) emissions and customer satisfaction constitute the major parts of the supply chain that need to be taken into account integratedly within a common framework. For this purpose, this paper tries to introduce the reliable Pollution-Routing Problem with Cross-dock Selection (PRP-CDS) where the products are processed and transported through at least one cross-dock. To formulate the problem, a Bi-Objective Mixed-Integer Linear Programming (BOMILP) model is developed, where the first objective is to minimize total cost including pollution and routing costs and the second is to maximize supply reliability. Accordingly, sustainable development of the supply chain is addressed. Due to the high complexity of the problem, two well-known meta-heuristic algorithms including Multi-Objective Simulated-annealing Algorithm (MOSA) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) are designed to provide efficient Pareto solutions. Furthermore, the ?-constraint method is applied to the model to test its applicability in small-sized problems. The efficiency of the suggested solution techniques is evaluated using different measures and a statistical test. To validate the performance of the proposed methodology, a real case study problem is conducted using the sensitivity analysis of demand parameter. Based on the main findings of the study, it is concluded that the solution techniques can yield high-quality solutions and NSGA-II is considered as the most efficient solution tool, the optimal route planning of the case study problem in delivery and pick-up phases is attained using the best-found Pareto solution and the highest change in the objective function occurs for the total cost value by applying a 20% increase in the demand parameter. © 2020 Elsevier Ltd

Source

Journal of Cleaner Production

Volume

276

URI

https://doi.org/10.1016/j.jclepro.2020.122927
https://hdl.handle.net/20.500.12713/276

Collections

  • Makale Koleksiyonu [38]
  • Scopus İndeksli Yayınlar Koleksiyonu [1274]
  • WoS İndeksli Yayınlar Koleksiyonu [1330]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || İstinye University || OAI-PMH ||

İstinye University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstinye University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.