• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy-efficient distributed permutation flow shop scheduling problem using a multi-objective whale swarm algorithm

Thumbnail

View/Open

Tam Metin/ Full Text (2.210Mb)

Date

2020

Author

Wang G.
Gao L.
Li X.
Li P.
Tasgetiren, Mehmet Fatih

Metadata

Show full item record

Citation

Wang, G., Gao, L., Li, X., Li, P., & Tasgetiren, M. F. (2020). Energy-efficient distributed permutation flow shop scheduling problem using a multi-objective whale swarm algorithm. Swarm and Evolutionary Computation, 100716.

Abstract

Production scheduling is of great significance in improving production effectiveness while the energy-efficient problem is one of most concerned problems for researchers and manufacturers. Thus, this study investigates the energy-efficient distributed permutation flow shop scheduling problem (DPFSP) with the objectives of makespan and energy consumption. The DPFSP is an extension of permutation flow shop problem (PFSP) considering a set of identical factories. This paper presents a multi-objective mixed integer programming model based on the three sub-problems: allocating jobs among factories, scheduling the jobs in each factory and determining speed upon each job. A multi-objective whale swarm algorithm (MOWSA) is proposed to solve this energy-efficient DPFSP. A new problem-dependent local search is developed to improve the exploitation capability of MOWSA. Moreover, the updating exploitation mechanism is presented to enhance energy efficiency without affecting production efficiency. Finally, the extensive comparison experiments are designed to demonstrate the effectiveness of proposed MOWSA, problem-dependent local search and updating exploitation mechanism. The results indicate the effectiveness of MOWSA and the superior performance over NSGA-II, SPEA2, PAES and MDEA, and also demonstrate that the proposed algorithm can significantly reduce the energy consumption compared with other algorithms. © 2020 Elsevier B.V.

Source

Swarm and Evolutionary Computation

Volume

57

URI

https://doi.org/10.1016/j.swevo.2020.100716
https://hdl.handle.net/20.500.12713/278

Collections

  • Endüstri Mühendisliği Bölümü Makale Koleksiyonu [60]
  • Scopus İndeksli Yayınlar Koleksiyonu [1892]
  • WoS İndeksli Yayınlar Koleksiyonu [1969]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || İstinye University || OAI-PMH ||

İstinye University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstinye University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.