• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@İSÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed | DergiPark
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A tree augmented naive bayes-based methodology for classifying cryptocurrency trends

Thumbnail

View/Open

Tam Metin / Full Text (3.232Mb)

Date

2023

Author

Dağ, Ali
Dağ, Aslı Z.
Asilkalkan, Abdullah
Şimşek, Serhat
Delen, Dursun

Metadata

Show full item record

Citation

Dag, A., Dag, A. Z., Asilkalkan, A., Simsek, S., & Delen, D. (2023). A Tree Augmented Naïve Bayes-based methodology for classifying cryptocurrency trends. Journal of Business Research, 156, 113522.

Abstract

As the popularity of blockchain technology and investor confidence in Bitcoin (BTC) increased in recent years, many individuals started making BTC and other cryptocurrency investments, in expectation of high returns. However, as recent market movements have shown, the lack of regulation and oversight makes it difficult to guard against high volatility and potentially significant losses in this sector. In this study, we propose a datadriven Tree Augmented Naive (TAN) Bayes methodology that can be used for identifying the most important factors (as well as their conditional, interdependent relationships) influencing BTC price movements. As the model is parsimonious without sacrificing accuracy, sensitivity, and specificity-as evident from the average accuracy value-the proposed methodology can be used in practice for making short-term investment decisions.

Source

JOURNAL OF BUSINESS RESEARCH

Volume

156

URI

http://dx.doi.org/10.1016/j.jbusres.2022.113522
1873-7978
https://hdl.handle.net/20.500.12713/3843

Collections

  • Endüstri Mühendisliği Bölümü Makale Koleksiyonu [63]
  • Scopus İndeksli Yayınlar Koleksiyonu [1920]
  • WoS İndeksli Yayınlar Koleksiyonu [2023]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || İstinye University || OAI-PMH ||

İstinye University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
İstinye University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.